Multiverse analysis—a paradigm for statistical analysis that considers all combinations of reasonable analysis choices in parallel—promises to improve transparency and reproducibility. Although recent tools help analysts specify multiverse analyses, they remain difficult to use in practice. In this work, we identify debugging as a key barrier due to the latency from running analyses to detecting bugs and the scale of metadata processing needed to diagnose a bug. To address these challenges, we prototype a command-line interface tool, Multiverse Debugger, which helps diagnose bugs in the multiverse and propagate fixes. In a qualitative lab study (n=13), we use Multiverse Debugger as a probe to develop a model of debugging workflows and identify specific challenges, including difficulty in understanding the multiverse’s composition. We conclude with design implications for future multiverse analysis authoring systems.
more »
« less
Milliways: Taming Multiverses through Principled Evaluation of Data Analysis Paths
Multiverse analyses involve conducting all combinations of reasonable choices in a data analysis process. A reader of a study containing a multiverse analysis might question—are all the choices included in the multiverse reasonable and equally justifiable? How much do results vary if we make different choices in the analysis process? In this work, we identify principles for validating the composition of, and interpreting the uncertainty in, the results of a multiverse analysis. We present Milliways, a novel interactive visualisation system to support principled evaluation of multiverse analyses. Milliways provides interlinked panels presenting result distributions, individual analysis composition, multiverse code specification, and data summaries. Milliways supports interactions to sort, filter and aggregate results based on the analysis specification to identify decisions in the analysis process to which the results are sensitive. To represent the two qualitatively different types of uncertainty that arise in multiverse analyses—probabilistic uncertainty from estimating unknown quantities of interest such as regression coefficients, and possibilistic uncertainty from choices in the data analysis—Milliways uses consonance curves and probability boxes. Through an evaluative study with five users familiar with multiverse analysis, we demonstrate how Milliways can support multiverse analysis tasks, including a principled assessment of the results of a multiverse analysis.
more »
« less
- Award ID(s):
- 2211939
- PAR ID:
- 10547794
- Publisher / Repository:
- Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems
- Date Published:
- ISBN:
- 9798400703300
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Bayesian additive regression trees (BART) provides a flexible approach to fitting a variety of regression models while avoiding strong parametric assumptions. The sum-of-trees model is embedded in a Bayesian inferential framework to support uncertainty quantification and provide a principled approach to regularization through prior specification. This article presents the basic approach and discusses further development of the original algorithm that supports a variety of data structures and assumptions. We describe augmentations of the prior specification to accommodate higher dimensional data and smoother functions. Recent theoretical developments provide justifications for the performance observed in simulations and other settings. Use of BART in causal inference provides an additional avenue for extensions and applications. We discuss software options as well as challenges and future directions.more » « less
-
Proper statistical modeling incorporates domain theory about how concepts relate and details of how data were measured. However, data analysts currently lack tool support for recording and reasoning about domain assumptions, data collection, and modeling choices in an integrated manner, leading to mistakes that can compromise scientific validity. For instance, generalized linear mixed-effects models (GLMMs) help answer complex research questions, but omitting random effects impairs the generalizability of results. To address this need, we present Tisane, a mixed-initiative system for authoring generalized linear models with and without mixed-effects. Tisane introduces a study design specification language for expressing and asking questions about relationships between variables. Tisane contributes an interactive compilation process that represents relationships in a graph, infers candidate statistical models, and asks follow-up questions to disambiguate user queries to construct a valid model. In case studies with three researchers, we find that Tisane helps them focus on their goals and assumptions while avoiding past mistakes.more » « less
-
Abstract Near‐term ecological forecasts provide resource managers advance notice of changes in ecosystem services, such as fisheries stocks, timber yields, or water quality. Importantly, ecological forecasts can identify where there is uncertainty in the forecasting system, which is necessary to improve forecast skill and guide interpretation of forecast results. Uncertainty partitioning identifies the relative contributions to total forecast variance introduced by different sources, including specification of the model structure, errors in driver data, and estimation of current states (initial conditions). Uncertainty partitioning could be particularly useful in improving forecasts of highly variable cyanobacterial densities, which are difficult to predict and present a persistent challenge for lake managers. As cyanobacteria can produce toxic and unsightly surface scums, advance warning when cyanobacterial densities are increasing could help managers mitigate water quality issues. Here, we fit 13 Bayesian state‐space models to evaluate different hypotheses about cyanobacterial densities in a low nutrient lake that experiences sporadic surface scums of the toxin‐producing cyanobacterium,Gloeotrichia echinulata. We used data from several summers of weekly cyanobacteria samples to identify dominant sources of uncertainty for near‐term (1‐ to 4‐week) forecasts ofG. echinulatadensities. Water temperature was an important predictor of cyanobacterial densities during model fitting and at the 4‐week forecast horizon. However, no physical covariates improved model performance over a simple model including the previous week's densities in 1‐week‐ahead forecasts. Even the best fit models exhibited large variance in forecasted cyanobacterial densities and did not capture rare peak occurrences, indicating that significant explanatory variables when fitting models to historical data are not always effective for forecasting. Uncertainty partitioning revealed that model process specification and initial conditions dominated forecast uncertainty. These findings indicate that long‐term studies of different cyanobacterial life stages and movement in the water column as well as measurements of drivers relevant to different life stages could improve model process representation of cyanobacteria abundance. In addition, improved observation protocols could better define initial conditions and reduce spatial misalignment of environmental data and cyanobacteria observations. Our results emphasize the importance of ecological forecasting principles and uncertainty partitioning to refine and understand predictive capacity across ecosystems.more » « less
-
Drawing reliable inferences from data involves many, sometimes arbitrary, decisions across phases of data collection, wrangling, and modeling. As different choices can lead to diverging conclusions, understanding how researchers make analytic decisions is important for supporting robust and replicable analysis. In this study, we pore over nine published research studies and conduct semi-structured interviews with their authors. We observe that researchers often base their decisions on methodological or theoretical concerns, but subject to constraints arising from the data, expertise, or perceived interpretability. We confirm that researchers may experiment with choices in search of desirable results, but also identify other reasons why researchers explore alternatives yet omit findings. In concert with our interviews, we also contribute visualizations for communicating decision processes throughout an analysis. Based on our results, we identify design opportunities for strengthening end-to-end analysis, for instance via tracking and meta-analysis of multiple decision paths.more » « less
An official website of the United States government

