Abstract Organic semiconductors have sparked interest as flexible, solution processable, and chemically tunable electronic materials. Improvements in charge carrier mobility put organic semiconductors in a competitive position for incorporation in a variety of (opto‐)electronic applications. One example is the organic field‐effect transistor (OFET), which is the fundamental building block of many applications based on organic semiconductors. While the semiconductor performance improvements opened up the possibilities for applying organic materials as active components in fast switching electrical devices, the ability to make good electrical contact hinders further development of deployable electronics. Additionally, inefficient contacts represent serious bottlenecks in identifying new electronic materials by inhibiting access to their intrinsic properties or providing misleading information. Recent work focused on the relationships of contact resistance with device architecture, applied voltage, metal and dielectric interfaces, has led to a steady reduction in contact resistance in OFETs. While impressive progress was made, contact resistance is still above the limits necessary to drive devices at the speed required for many active electronic components. Here, the origins of contact resistance and recent improvement in organic transistors are presented, with emphasis on the electric field and geometric considerations of charge injection in OFETs.
more »
« less
Designing Contact Independent High‐Performance Low‐Cost Flexible Electronics
Abstract Organic semiconductors enable low‐cost solution processing of optoelectronic devices on flexible substrates. Their use in contemporary applications, however, is sparse due to persistent challenges in achieving the requisite performance levels in a reliable and reproducible manner. A critical bottleneck is the inefficiency associated with charge injection. Here, large‐scale simulations are employed to identify operational windows where key device parameters that are difficult to control experimentally, such as the contact resistance, become less consequential to overall device functionality. This design methodology overcomes injection barrier limitations in organic field‐effect transistors (OFETs), leading to high charge carrier mobility and significantly expanding the range of suitable electrode materials. Leveraging this new understanding, all‐organic, solution‐deposited OFETs are successfully fabricated on flexible substrates. These devices incorporate printed contacts and showcase mobilities exceeding 5 cm2 Vs−1. These results provide a route for accessing the fundamental limits of material properties even in the absence of ideal contacts – a critical step in establishing reliable structure/property relationships and optimal material design paradigms. While reducing the injection barrier and contact resistance remains critical for achieving high OFET performance, this work demonstrates a path toward consistently achieving high charge carrier mobility through device geometry design, ultimately reducing processing complexity and cost.
more »
« less
- PAR ID:
- 10548114
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Materials
- Volume:
- 36
- Issue:
- 48
- ISSN:
- 0935-9648
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The performance of electronic and optoelectronic devices is dominated by charge carrier injection through the metal–semiconductor contacts. Therefore, creating low-resistance electrical contacts is one of the most critical challenges in the development of devices based on new materials, particularly in the case of two-dimensional semiconductors. Herein, we report a strategy to reduce the contact resistance of MoS 2 via local pressurization. We fabricated electrical contacts using an atomic force microscopy tip and applied variable pressure ranging from 0 to 25 GPa. By measuring the transverse electronic transport properties, we show that MoS 2 undergoes a reversible semiconducting-metallic transition under pressure. Planar devices in field effect configuration with electrical contacts performed at pressures above ∼15 GPa show up to 30-fold reduced contact resistance and up to 25-fold improved field-effect mobility when compared to those measured at low pressure. Theoretical simulations show that this enhanced performance is due to improved charge injection to the MoS 2 semiconductor channel through the metallic MoS 2 phase obtained by pressurization. Our results suggest a novel strategy for realizing improved contacts to MoS 2 devices by local pressurization and for exploring emergent phenomena under mechano-electric modulation.more » « less
-
Abstract Solution‐processable organic semiconductors can serve as the basis for new products including rollable displays, tattoo‐like smart bandages for real‐time health monitoring, and conformable electronics integrated into clothing or even implanted in the human body. For such exciting commercial applications to become a reality, good device performance and uniformity over large areas are necessary. The design of new materials has progressed at an astonishing pace, but accessing their intrinsic, efficient electrical properties in large‐area flexible device arrays is difficult. The development of protocols that allow integration with industrial‐scale processing for high‐throughput manufacturing, without the need to compromise on performance, is the key for transitioning these materials to real‐life applications. In this work, large‐area arrays of organic thin‐film transistors obtained by spray‐coating the high‐mobility polymer indacenodithiophene‐co‐benzothiadiazole (IDTBT) are demonstrated. A maximum charge carrier mobility of 2.3 cm2V−1s−1, with a very narrow performance distribution, is obtained over surface areas of 10 cm × 10 cm. The devices retain their electrical properties when bent multiple times and at different curvatures. In addition, large arrays of highly sensitive (0.25% change in mobility for 1% humidity variation), reusable, near‐identical humidity sensors are produced in a one‐step fabrication and calibrated from 0% to 94% relative humidity.more » « less
-
Abstract Organic permeable‐base transistors (OPBTs) show potential for high‐speed, flexible electronics. Scaling laws of OPBTs are discussed and it is shown that OPBT performance can be increased by reducing their effective device area. Comparing the performance of optimized OPBTs with state‐of‐the‐art organic field‐effect transistors (OFETs), it is shown that OPBTs have a higher potential for an increased transit frequency. Not only do OPBTs reach higher transconductance values without the need for sophisticated structuring techniques, but they are also less sensitive to parasitic contact resistances. With the help of a 2D numerical model, the reduced contact resistances of OPBTs are explained by a homogeneous injection of current across the entire emitter electrode, compared to injection in a small area along the edge of the source of OFETs.more » « less
-
Abstract To exploit their charge transport properties in transistors, semiconducting carbon nanotubes must be assembled into aligned arrays comprised of individualized nanotubes at optimal packing densities. However, achieving this control on the wafer‐scale is challenging. Here, solution‐based shear in substrate‐wide, confined channels is investigated to deposit continuous films of well‐aligned, individualized, semiconducting nanotubes. Polymer‐wrapped nanotubes in organic ink are forced through sub‐mm tall channels, generating shear up to 10 000 s−1uniformly aligning nanotubes across substrates. The ink volume and concentration, channel height, and shear rate dependencies are elucidated. Optimized conditions enable alignment within a ±32° window, at 50 nanotubes µm−1, on 10 × 10 cm2substrates. Transistors (channel length of 1–5 µm) are fabricated parallel and perpendicular to the alignment. The parallel transistors perform with 7× faster charge carrier mobility (101 and 49 cm2V−1s−1assuming array and parallel‐plate capacitances, respectively) with high on/off ratio of 105. The spatial uniformity varies ±10% in density, ±2° in alignment, and ±7% in mobility. Deposition occurs within seconds per wafer, and further substrate scaling is viable. Compared to random networks, aligned nanotube films promise to be a superior platform for applications including sensors, flexible/stretchable electronics, and light emitting and harvesting devices.more » « less
An official website of the United States government
