skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A first-principles study of multilayer Ti 3 C 2 T x MXene model
We proposed a more realistic albeit slightly complicated multilayer Ti3C2Tx model and performed a comprehensive theoretical study of its structural and electronic properties. In this work, we constructed various multilayer Ti3C2Tx structures considering different concentrations of hydrofluoric acid (HF; 5, 10, and 48 wt%) as the etchant. The validity of our ternary mixed O/OH/F-terminated Ti3C2Tx multilayer models is confirmed by the consistency of the calculated d-spacing (9.60 ± 0.07 Å), simulated X-ray diffraction (XRD) spectra and the predicted adhesion energy (0.77 ± 0.15 J m−2) with the reported experimental measurements. The uniform terminated and mixed terminated multilayer Ti3C2Tx exhibit metallic characteristics, similar to those of monolayer Ti3C2Tx. We found a stronger interaction between the interlayers with OH-rich ternary mixed terminated Ti3C2Tx surfaces, due to the formation of hydrogen bonds between the hydroxyl groups and adjacent layers of F/O terminal groups as supported by the crystal orbital Hamilton population (COHP) calculation. From this finding, we propose that multilayer Ti3C2Tx etched with a strong HF acid could be easily exfoliated into monolayer sheets due to smaller adhesion energy. Based on this work, we believe that the current findings will offer a fundamental understanding and a useful baseline multilayer model for the future investigation of the hydrogen and ion storage and diffusion properties in the MXene multilayer application.  more » « less
Award ID(s):
2117956
PAR ID:
10548390
Author(s) / Creator(s):
;
Publisher / Repository:
RSC Publishing
Date Published:
Journal Name:
Nanoscale
ISSN:
2040-3364
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. With varying hydrofluoric acid (HF) concentrations under three etching conditions, we presented a comparative study of the effects of both the ordered and randomly ternary mixed terminated Ti3C2Tx surfaces with a wide variation of O/OH/F stoichiometry on the thermodynamic stability and electronic properties. Regardless of the HF concentration, an OH-rich surface is found to be thermodynamically stable and the electrical conductivity of Ti3C2Tx is substantially affected by the OH concentration. The charge density difference and electron localization function demonstrated a significant electron localization at the hydroxyl group on the O/OH/F mixed terminated surface, which could yield a locally induced dipole on the surface that renders favorable reaction sites on the functionalized surface. In addition, a large tunability in the work function (ΔΦ ∼ 3.5 eV) is predicted for Ti3C2Tx. These findings provide a pathway for strategically tuning the electronic and structural properties of Ti3C2 MXenes etched with HF. 
    more » « less
  2. MXene, with its high aspect ratio and adjustable surface properties, has garnered significant attention in the realm of hydrogen storage research. For the first time, considering a ternary/quaternary mixed terminated MXene surface, the authors have investigated comprehensively the hydrogen storage potential of two-dimensional (2D) titanium carbide Ti3C2Tx monolayer MXene using density functional theory (DFT). By considering mixed terminated surfaces, this study indicated the locally induced dipole due to the mixed termination is beneficial in facilitating hydrogen adsorption with stronger average adsorption energies than that of the uniform F-/O-/OH-/H-terminated surfaces. The authors estimated a compelling average H2 surface adsorption energy on the ternary mixed termination and total surface storage capacity to be −0.14 eV/H2 and ∼2 wt% H2, which is comparable to that of the metal-organic frameworks (MOFs). This study also reveals the importance of the local surface chemistry effects on hydrogen adsorption. 
    more » « less
  3. Although surface terminations (such as ═O, –Cl, –F, and –OH) on MXene nanosheets strongly influence their functional properties, synthesis of MXenes with desired types and distribution of those terminations is still challenging. Here, it is demonstrated that thermal annealing helps in removing much of the terminal groups of molten salt-etched multilayered (ML) Ti3C2Tz. In this study, the chloride terminations of molten salt-etched ML-Ti3C2Tz were removed via thermal annealing at increased temperatures under an inert (argon) atmosphere. This thermal annealing created some bare sites available for further functionalization of Ti3C2Tz. XRD, EDS, and XPS measurements confirm the removal of much of the terminal groups of ML-Ti3C2Tz. Here, the annealed ML-Ti3C2Tz was refunctionalized by −OH groups and 3-aminopropyl triethoxysilane (APTES), which was confirmed by FTIR. The −OH and APTES surface-modified ML-Ti3C2Tz are evaluated as a solid lubricant, exhibiting ∼70.1 and 66.7% reduction in friction compared to a steel substrate, respectively. This enhanced performance is attributed to the improved interaction or adhesion of functionalized ML-Ti3C2Tz with the substrate material. This approach allows for the effective surface modification of MXenes and control of their functional properties. 
    more » « less
  4. Anhydride terminated acene thin films were chemically transformed to thiol or carboxylic acid functionalities, groups heretofore incompatible with monolayer reactions. The molecular surface imparts large rate acceleration when imides are formed, while disfavored disulfides can be formed from the thiols. The modified surface imparts improved adhesion to top metal contacts in flexible/bendable applications. 
    more » « less
  5. Two-dimensional, 2D, niobium carbide MXene, Nb2CTx, has attracted attention due to its extraordinarily high photothermal conversion efficiency that has applications ranging from medicine, for tumor ablation, to solar energy conversion. Here, we characterize its electronic properties and investigate the ultrafast dynamics of its photoexcitations with a goal of shedding light onto the origins of its unique properties. Through density functional theory, DFT, calculations, we find that Nb2CTx is metallic, with a small but finite DOS at the Fermi level for all experimentally relevant terminations that can be achieved using HF or molten salt etching of the parent MAX phase, including –OH, –O, –F, –Cl, –Br, –I. In agreement with this prediction, THz spectroscopy reveals an intrinsic long-range conductivity of ∼60 Ω−1 cm−1, with significant charge carrier localization and a charge carrier density (∼1020 cm−3) comparable to Mo-based MXenes. Excitation with 800 nm pulses results in a rapid enhancement in photoconductivity, which decays to less than 25% of its peak value within several picoseconds, underlying efficient photothermal conversion. At the same time, a small fraction of photoinjected excess carriers persists for hundreds of picoseconds and can potentially be utilized in photocatalysis or other energy conversion applications. 
    more » « less