skip to main content


This content will become publicly available on May 13, 2025

Title: LIFL: A Lightweight, Event-driven Serverless Platform for Federated Learning
Federated Learning (FL) typically involves a large-scale, distributed system with individual user devices/servers training models locally and then aggregating their model updates on a trusted central server. Existing systems for FL often use an always-on server for model aggregation, which can be inefficient in terms of resource utilization. They also may be inelastic in their resource management. This is particularly exacerbated when aggregating model updates at scale in a highly dynamic environment with varying numbers of heterogeneous user devices/servers. We present LIFL, a lightweight and elastic serverless cloud platform with fine-grained resource management for efficient FL aggregation at scale. LIFL is enhanced by a streamlined, event-driven serverless design that eliminates the individual, heavyweight message broker and replaces inefficient container-based sidecars with lightweight eBPF-based proxies. We leverage shared memory processing to achieve high-performance communication for hierarchical aggregation, which is commonly adopted to speed up FL aggregation at scale. We further introduce the locality-aware placement in LIFL to maximize the benefits of shared memory processing. LIFL precisely scales and carefully reuses the resources for hierarchical aggregation to achieve the highest degree of parallelism, while minimizing aggregation time and resource consumption. Our preliminary experimental results show that LIFL achieves significant improvement in resource efficiency and aggregation speed for supporting FL at scale, compared to existing serverful and serverless FL systems.  more » « less
Award ID(s):
1818971
NSF-PAR ID:
10548463
Author(s) / Creator(s):
; ;
Editor(s):
Gibbons, P; Pekhimenko, G; De_Sa, C
Publisher / Repository:
7th MLSys 2024 Conference
Date Published:
Edition / Version:
7
Format(s):
Medium: X
Location:
Proceedings of Machine Learning and Systems 7 (MLSys 2024) Conference
Sponsoring Org:
National Science Foundation
More Like this
  1. Federated learning (FL) is an increasingly popular approach for machine learning (ML) when the training dataset is highly distributed. Clients perform local training on their datasets and the updates are then aggregated into the global model. Existing protocols for aggregation are either inefficient or don’t consider the case of malicious actors in the system. This is a major barrier to making FL an ideal solution for privacy-sensitive ML applications. In this talk, I will present ELSA, a secure aggregation protocol for FL that breaks this barrier - it is efficient and addresses the existence of malicious actors (clients + servers) at the core of its design. Similar to prior work Prio and Prio+, ELSA provides a novel secure aggregation protocol built out of distributed trust across two servers that keeps individual client updates private as long as one server is honest, defends against malicious clients, and is efficient end-to-end. Compared to prior works, the distinguishing theme in ELSA is that instead of the servers generating cryptographic correlations interactively, the clients act as untrusted dealers of these correlations without compromising the protocol’s security. This leads to a much faster protocol while also achieving stronger security at that efficiency compared to prior work. We introduce new techniques that retain privacy even when a server is malicious at a small added cost of 7-25% in runtime with a negligible increase in communication over the case of a semi-honest server. ELSA improves end-to-end runtime over prior work with similar security guarantees by big margins - single-aggregator RoFL by up to 305x (for the models we consider), and distributed-trust Prio by up to 8x (with up to 16x faster server-side protocol). Additionally, ELSA can be run in a bandwidth-saver mode for clients who are geographically bandwidth-constrained - an important property that is missing from prior works. 
    more » « less
  2. Federated learning (FL) is an increasingly popular approach for machine learning (ML) in cases where the training dataset is highly distributed. Clients perform local training on their datasets and the updates are then aggregated into the global model. Existing protocols for aggregation are either inefficient, or don’t consider the case of malicious actors in the system. This is a major barrier in making FL an ideal solution for privacy-sensitive ML applications. We present ELSA, a secure aggregation protocol for FL, which breaks this barrier - it is efficient and addresses the existence of malicious actors at the core of its design. Similar to prior work on Prio and Prio+, ELSA provides a novel secure aggregation protocol built out of distributed trust across two servers that keeps individual client updates private as long as one server is honest, defends against malicious clients, and is efficient end-to-end. Compared to prior works, the distinguishing theme in ELSA is that instead of the servers generating cryptographic correlations interactively, the clients act as untrusted dealers of these correlations without compromising the protocol’s security. This leads to a much faster protocol while also achieving stronger security at that efficiency compared to prior work. We introduce new techniques that retain privacy even when a server is malicious at a small added cost of 7-25% in runtime with negligible increase in communication over the case of semi-honest server. Our work improves end-to-end runtime over prior work with similar security guarantees by big margins - single-aggregator RoFL by up to 305x (for the models we consider), and distributed trust Prio by up to 8x. 
    more » « less
  3. null (Ed.)
    Edge Computing (EC) has seen a continuous rise in its popularity as it provides a solution to the latency and communication issues associated with edge devices transferring data to remote servers. EC achieves this by bringing the cloud closer to edge devices. Even though EC does an excellent job of solving the latency and communication issues, it does not solve the privacy issues associated with users transferring personal data to the nearby edge server. Federated Learning (FL) is an approach that was introduced to solve the privacy issues associated with data transfers to distant servers. FL attempts to resolve this issue by bringing the code to the data, which goes against the traditional way of sending the data to remote servers. In FL, the data stays on the source device, and a Machine Learning (ML) model used to train the local data is brought to the end device instead. End devices train the ML model using local data and then send the model updates back to the server for aggregation. However, this process of asking random devices to train a model using its local data has potential risks such as a participant poisoning the model using malicious data for training to produce bogus parameters. In this paper, an approach to mitigate data poisoning attacks in a federated learning setting is investigated. The application of the approach is highlighted, and the practical and secure nature of this approach is illustrated as well using numerical results. 
    more » « less
  4. Federated learning (FL) has been emerging as a new distributed machine learning paradigm recently. Although FL can protect the data privacy of participants by keeping their training data on local devices, there are recent works raising new privacy concerns especially when workers or the parameter server of FL are untrustworthy or malicious. One effective way to solve the problem is using hierarchical federated learning (HFL) where a few middle-layer aggregators (or called group leaders) are used to aggregate local model updates from workers and send group model updates to the parameter server. In this paper, we consider the participant selection problem of HFL in an edge cloud with multiple FL models, where each model needs to select one parameter server, a few group leaders and a certain amount of workers from edge servers to jointly perform HFL. We first formulate this problem as a non-linear integer programming, aiming to minimize the total learning cost of all models while satisfying the constrained edge resources. We then design a three-stage algorithm by decoupling the original problem into three sub-problems and solving them iteratively. Simulations with real-world datasets and FL models confirm that our proposed algorithm can efficiently reduce the average total learning cost in edge cloud compared with existing methods. 
    more » « less
  5. To scale the Internet of Things (IoT) beyond a single home or enterprise, we need an effective mechanism to manage the growth of data, facilitate resource discovery and name resolution, encourage data sharing, and foster cross-domain services. To address these needs, we propose a GlObaL Directory for Internet of Everything (GOLDIE). GOLDIE is a hierarchical location-based IoT directory architecture featuring diverse user-oriented modules and federated identity management. IoT-specific features include discoverability, aggregation and geospatial queries, and support for global access. We implement and evaluate the prototype on a Raspberry Pi and Intel mini servers. We show that a global implementation of GOLDIE could decrease service access latency by 87% compared to a centralized-server solution. 
    more » « less