Increasing air temperatures are changing the arctic tundra biome. Permafrost is thawing, snow duration is decreasing, shrub vegetation is proliferating, and boreal wildlife is encroaching. Here we present evidence of the recent range expansion of North American beaver (
This content will become publicly available on November 1, 2025
- Award ID(s):
- 2009353
- PAR ID:
- 10548475
- Publisher / Repository:
- Geoforum
- Date Published:
- Journal Name:
- Geoforum
- Volume:
- 156
- Issue:
- C
- ISSN:
- 0016-7185
- Page Range / eLocation ID:
- 104121
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Castor canadensis ) into the Arctic, and consider how this ecosystem engineer might reshape the landscape, biodiversity, and ecosystem processes. We developed a remote sensing approach that maps formation and disappearance of ponds associated with beaver activity. Since 1999, 56 new beaver pond complexes were identified, indicating that beavers are colonizing a predominantly tundra region (18,293 km2) of northwest Alaska. It is unclear how improved tundra stream habitat, population rebound following overtrapping for furs, or other factors are contributing to beaver range expansion. We discuss rates and likely routes of tundra beaver colonization, as well as effects on permafrost, stream ice regimes, and freshwater and riparian habitat. Beaver ponds and associated hydrologic changes are thawing permafrost. Pond formation increases winter water temperatures in the pond and downstream, likely creating new and more varied aquatic habitat, but specific biological implications are unknown. Beavers create dynamic wetlands and are agents of disturbance that may enhance ecosystem responses to warming in the Arctic. -
Abstract Understanding changes in macroinvertebrate communities is important because they play a large role in stream ecosystem functioning, and they are an important food resource for fish. Beaver‐induced changes to stream morphology could alter macroinvertebrate communities, which in turn could affect food webs and ecosystem function. However, studies investigating the effects of North American beaver activities on macroinvertebrates are rare in the inter‐mountain west, an area with high potential for beaver‐assisted restoration.
The aim of this study was to quantify differences in the macroinvertebrate community between unaltered segments of streams and within beaver ponds in north‐eastern Utah, U.S.A. We assessed macroinvertebrate species richness, biomass, density, functional feeding group composition, mobility group composition, and macroinvertebrate habitat characteristics to test the hypothesis that macroinvertebrate communities will differ among habitat types (undammed stream segments and beaver ponds) in beaver‐occupied streams.
Beaver pond communities significantly differed from lotic reach communities in many ways. Beaver ponds were less diverse with 25% fewer species. Although there was variability among streams, in general, beaver ponds had 75% fewer individuals and 90% lower total macroinvertebrate biomass compared to lotic reaches.
Regarding functional feeding groups, beaver ponds contained more engulfers, while lotic reaches contained more scrapers, filterers, and gatherers. For mobility groups, beaver ponds had more sprawlers, while lotic reaches had more clingers. Swimmers were also more prevalent in lotic reaches, although this is probably due to the abundance of
Baetis within lotic reaches. More beaver pond taxa were classified as lentic‐dwelling insects, while more lotic reach taxa were categorised as preferring lotic habitats.The creation of ponds by beavers fundamentally altered the macroinvertebrate community in north‐eastern Utah streams. Such changes to stream macroinvertebrate communities suggest that recolonisation of beavers across North America may be altering stream functioning and food webs. Our study highlights the need to further investigate the effects of beaver recolonisation on stream communities.
-
River ecosystems are highly biodiverse, influence global biogeochemical cycles, and provide valued services. However, humans are increasingly degrading fluvial ecosystems by altering their streamflows. Effective river restoration requires advancing our mechanistic understanding of how flow regimes affect biota and ecosystem processes. Here, we review emerging advances in hydroecology relevant to this goal. Spatiotemporal variation in flow exerts direct and indirect control on the composition, structure, and dynamics of communities at local to regional scales. Streamflows also influence ecosystem processes, such as nutrient uptake and transformation, organic matter processing, and ecosystem metabolism. We are deepening our understanding of how biological processes, not just static patterns, affect and are affected by stream ecosystem processes. However, research on this nexus of flow-biota-ecosystem processes is at an early stage. We illustrate this frontier with evidence from highly altered regulated rivers and urban streams. We also identify research challenges that should be prioritized to advance process-based river restoration.more » « less
-
Abstract Beaver dam analogs (BDAs) are a stream restoration technique that is rapidly gaining popularity in the western United States. These low‐cost, stream‐spanning structures, designed after natural beaver dams, are being installed to confer the ecologic, hydrologic, and geomorphic benefits of beaver dams in streams that are often too degraded to provide suitable beaver habitat. BDAs are intended to slow streamflow, reduce the erosive power of the stream, and promote aggradation, making them attractive restoration tools in incised channels. Despite increasing adoption of BDAs, few studies to date have monitored the impacts of BDAs on channel form. Here, we examine the geomorphic changes that occurred within the first year of restoration efforts in Wyoming using high‐resolution visible light orthomosaics and elevation data collected with unoccupied aerial vehicles (UAVs). By leveraging the advantages of rapidly acquired images from UAV surveys with recent advancements in structure‐from‐motion photogrammetry, we constructed centimeter‐scale digital elevation models (DEMs) of the restoration reach and an upstream control reach. Through DEM differencing, we identified areas of enhanced erosion and deposition near the BDAs, suggesting BDA installation initiated a unique geomorphic response in the channel. Both reaches were characterized by net erosion during the first year of restoration efforts. While erosion around the BDAs may seem counter to the long‐term goal of BDA‐induced aggradation, short‐term net erosion is consistent with high precipitation during the study and with theoretical channel evolution models of beaver‐related stream restoration that predict initial channel widening and erosion before net deposition. To better understand the impacts of BDAs on channel morphology and restoration efforts in the western United States, it is imperative that we consistently assess the effects of beaver‐inspired restoration projects across a range of hydrologic and geomorphic settings and that we continue this monitoring in the future.
-
The North American Electric Reliability Corporation (NERC) tracks the restoration of the North American transmission system after events which test the grid resilience and reliability. Quantifying and analyzing these historical events is a foundation for studying and maintaining resilience. After showing that the largest recent events are dominated by extreme weather events, the paper analyzes these events by extracting the restore process for each event and defining, calculating, and discussing various metrics that quantify the restoration. The metrics include a duration metric of time to substantial restoration. In 2021, Hurricane Ida was the largest resilience event in the North American system. A case study of Hurricane Ida analyzes the generator outages and restoration as well as the transmission system outages and restoration.more » « less