In a Merlin–Arthur proof system, the proof verifier (Arthur) accepts valid proofs (from Merlin) with probability 1, and rejects invalid proofs with probability arbitrarily close to 1. The running time of such a system is defined to be the length of Merlin’s proof plus the running time of Arthur. We provide new Merlin–Arthur proof systems for some key problems in fine-grained complexity. In several cases our proof systems have optimal running time. Our main results include: Certifying that a list of Counting the number of Computing the All-Pairs Shortest Distances matrix for an Certifying that an Certifying a Quantified Boolean Formula is true can be done in Merlin–Arthur time
Due to the centrality of these problems in fine-grained complexity, our results have consequences for many other problems of interest. For example, our work implies that certifying there is no Subset Sum solution to
Given a monotone submodular set function with a knapsack constraint, its maximization problem has two types of approximation algorithms with running time
- PAR ID:
- 10548547
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Journal of Combinatorial Optimization
- Volume:
- 48
- Issue:
- 4
- ISSN:
- 1382-6905
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract n integers has no 3-SUM solution can be done in Merlin–Arthur time . Previously, Carmosino et al. [ITCS 2016] showed that the problem has a nondeterministic algorithm running in$$\tilde{O}(n)$$ time (that is, there is a proof system with proofs of length$$\tilde{O}(n^{1.5})$$ and a deterministic verifier running in$$\tilde{O}(n^{1.5})$$ time).$$\tilde{O}(n^{1.5})$$ k -cliques with total edge weight equal to zero in ann -node graph can be done in Merlin–Arthur time (where$${\tilde{O}}(n^{\lceil k/2\rceil })$$ ). For odd$$k\ge 3$$ k , this bound can be further improved for sparse graphs: for example, counting the number of zero-weight triangles in anm -edge graph can be done in Merlin–Arthur time . Previous Merlin–Arthur protocols by Williams [CCC’16] and Björklund and Kaski [PODC’16] could only count$${\tilde{O}}(m)$$ k -cliques in unweighted graphs, and had worse running times for smallk .n -node graph can be done in Merlin–Arthur time . Note this is optimal, as the matrix can have$$\tilde{O}(n^2)$$ nonzero entries in general. Previously, Carmosino et al. [ITCS 2016] showed that this problem has an$$\Omega (n^2)$$ nondeterministic time algorithm.$$\tilde{O}(n^{2.94})$$ n -variablek -CNF is unsatisfiable can be done in Merlin–Arthur time . We also observe an algebrization barrier for the previous$$2^{n/2 - n/O(k)}$$ -time Merlin–Arthur protocol of R. Williams [CCC’16] for$$2^{n/2}\cdot \textrm{poly}(n)$$ SAT: in particular, his protocol algebrizes, and we observe there is no algebrizing protocol for$$\#$$ k -UNSAT running in time. Therefore we have to exploit non-algebrizing properties to obtain our new protocol.$$2^{n/2}/n^{\omega (1)}$$ . Previously, the only nontrivial result known along these lines was an Arthur–Merlin–Arthur protocol (where Merlin’s proof depends on some of Arthur’s coins) running in$$2^{4n/5}\cdot \textrm{poly}(n)$$ time.$$2^{2n/3}\cdot \textrm{poly}(n)$$ n integers can be done in Merlin–Arthur time , improving on the previous best protocol by Nederlof [IPL 2017] which took$$2^{n/3}\cdot \textrm{poly}(n)$$ time.$$2^{0.49991n}\cdot \textrm{poly}(n)$$ -
Abstract Approximate integer programming is the following: For a given convex body
, either determine whether$$K \subseteq {\mathbb {R}}^n$$ is empty, or find an integer point in the convex body$$K \cap {\mathbb {Z}}^n$$ which is$$2\cdot (K - c) +c$$ K , scaled by 2 from its center of gravityc . Approximate integer programming can be solved in time while the fastest known methods for exact integer programming run in time$$2^{O(n)}$$ . So far, there are no efficient methods for integer programming known that are based on approximate integer programming. Our main contribution are two such methods, each yielding novel complexity results. First, we show that an integer point$$2^{O(n)} \cdot n^n$$ can be found in time$$x^* \in (K \cap {\mathbb {Z}}^n)$$ , provided that the$$2^{O(n)}$$ remainders of each component for some arbitrarily fixed$$x_i^* \mod \ell $$ of$$\ell \ge 5(n+1)$$ are given. The algorithm is based on a$$x^*$$ cutting-plane technique , iteratively halving the volume of the feasible set. The cutting planes are determined via approximate integer programming. Enumeration of the possible remainders gives a algorithm for general integer programming. This matches the current best bound of an algorithm by Dadush (Integer programming, lattice algorithms, and deterministic, vol. Estimation. Georgia Institute of Technology, Atlanta, 2012) that is considerably more involved. Our algorithm also relies on a new$$2^{O(n)}n^n$$ asymmetric approximate Carathéodory theorem that might be of interest on its own. Our second method concerns integer programming problems in equation-standard form . Such a problem can be reduced to the solution of$$Ax = b, 0 \le x \le u, \, x \in {\mathbb {Z}}^n$$ approximate integer programming problems. This implies, for example that$$\prod _i O(\log u_i +1)$$ knapsack orsubset-sum problems withpolynomial variable range can be solved in time$$0 \le x_i \le p(n)$$ . For these problems, the best running time so far was$$(\log n)^{O(n)}$$ .$$n^n \cdot 2^{O(n)}$$ -
Abstract The electric
E 1 and magneticM 1 dipole responses of the nucleus$$N=Z$$ Mg were investigated in an inelastic photon scattering experiment. The 13.0 MeV electrons, which were used to produce the unpolarised bremsstrahlung in the entrance channel of the$$^{24}$$ Mg($$^{24}$$ ) reaction, were delivered by the ELBE accelerator of the Helmholtz-Zentrum Dresden-Rossendorf. The collimated bremsstrahlung photons excited one$$\gamma ,\gamma ^{\prime }$$ , four$$J^{\pi }=1^-$$ , and six$$J^{\pi }=1^+$$ states in$$J^{\pi }=2^+$$ Mg. De-excitation$$^{24}$$ rays were detected using the four high-purity germanium detectors of the$$\gamma $$ ELBE setup, which is dedicated to nuclear resonance fluorescence experiments. In the energy region up to 13.0 MeV a total$$\gamma $$ is observed, but this$$B(M1)\uparrow = 2.7(3)~\mu _N^2$$ nucleus exhibits only marginal$$N=Z$$ E 1 strength of less than e$$\sum B(E1)\uparrow \le 0.61 \times 10^{-3}$$ fm$$^2 \, $$ . The$$^2$$ branching ratios in combination with the expected results from the Alaga rules demonstrate that$$B(\varPi 1, 1^{\pi }_i \rightarrow 2^+_1)/B(\varPi 1, 1^{\pi }_i \rightarrow 0^+_{gs})$$ K is a good approximative quantum number for Mg. The use of the known$$^{24}$$ strength and the measured$$\rho ^2(E0, 0^+_2 \rightarrow 0^+_{gs})$$ branching ratio of the 10.712 MeV$$B(M1, 1^+ \rightarrow 0^+_2)/B(M1, 1^+ \rightarrow 0^+_{gs})$$ level allows, in a two-state mixing model, an extraction of the difference$$1^+$$ between the prolate ground-state structure and shape-coexisting superdeformed structure built upon the 6432-keV$$\varDelta \beta _2^2$$ level.$$0^+_2$$ -
Abstract The quantum simulation of quantum chemistry is a promising application of quantum computers. However, for
N molecular orbitals, the gate complexity of performing Hamiltonian and unitary Coupled Cluster Trotter steps makes simulation based on such primitives challenging. We substantially reduce the gate complexity of such primitives through a two-step low-rank factorization of the Hamiltonian and cluster operator, accompanied by truncation of small terms. Using truncations that incur errors below chemical accuracy allow one to perform Trotter steps of the arbitrary basis electronic structure Hamiltonian with$${\mathcal{O}}({N}^{4})$$ gate complexity in small simulations, which reduces to$${\mathcal{O}}({N}^{3})$$ gate complexity in the asymptotic regime; and unitary Coupled Cluster Trotter steps with$${\mathcal{O}}({N}^{2})$$ gate complexity as a function of increasing basis size for a given molecule. In the case of the Hamiltonian Trotter step, these circuits have$${\mathcal{O}}({N}^{3})$$ depth on a linearly connected array, an improvement over the$${\mathcal{O}}({N}^{2})$$ scaling assuming no truncation. As a practical example, we show that a chemically accurate Hamiltonian Trotter step for a 50 qubit molecular simulation can be carried out in the molecular orbital basis with as few as 4000 layers of parallel nearest-neighbor two-qubit gates, consisting of fewer than 105non-Clifford rotations. We also apply our algorithm to iron–sulfur clusters relevant for elucidating the mode of action of metalloenzymes.$${\mathcal{O}}({N}^{3})$$ -
Abstract Let
X be ann -element point set in thek -dimensional unit cube where$$[0,1]^k$$ . According to an old result of Bollobás and Meir (Oper Res Lett 11:19–21, 1992) , there exists a cycle (tour)$$k \ge 2$$ through the$$x_1, x_2, \ldots , x_n$$ n points, such that , where$$\left( \sum _{i=1}^n |x_i - x_{i+1}|^k \right) ^{1/k} \le c_k$$ is the Euclidean distance between$$|x-y|$$ x andy , and is an absolute constant that depends only on$$c_k$$ k , where . From the other direction, for every$$x_{n+1} \equiv x_1$$ and$$k \ge 2$$ , there exist$$n \ge 2$$ n points in , such that their shortest tour satisfies$$[0,1]^k$$ . For the plane, the best constant is$$\left( \sum _{i=1}^n |x_i - x_{i+1}|^k \right) ^{1/k} = 2^{1/k} \cdot \sqrt{k}$$ and this is the only exact value known. Bollobás and Meir showed that one can take$$c_2=2$$ for every$$c_k = 9 \left( \frac{2}{3} \right) ^{1/k} \cdot \sqrt{k}$$ and conjectured that the best constant is$$k \ge 3$$ , for every$$c_k = 2^{1/k} \cdot \sqrt{k}$$ . Here we significantly improve the upper bound and show that one can take$$k \ge 2$$ or$$c_k = 3 \sqrt{5} \left( \frac{2}{3} \right) ^{1/k} \cdot \sqrt{k}$$ . Our bounds are constructive. We also show that$$c_k = 2.91 \sqrt{k} \ (1+o_k(1))$$ , which disproves the conjecture for$$c_3 \ge 2^{7/6}$$ . Connections to matching problems, power assignment problems, related problems, including algorithms, are discussed in this context. A slightly revised version of the Bollobás–Meir conjecture is proposed.$$k=3$$