Abstract PremiseIncreased genome‐material costs of N and P atoms inherent to organisms with larger genomes have been proposed to limit growth under nutrient scarcities and to promote growth under nutrient enrichments. Such responsiveness may reflect a nutrient‐dependent diploid versus polyploid advantage that could have vast ecological and evolutionary implications, but direct evidence that material costs increase with ploidy level and/or influence cytotype‐dependent growth, metabolic, and/or resource‐use trade‐offs is limited. MethodsWe grew diploid, autotetraploid, and autohexaploidSolidago giganteaplants with one of four ambient or enriched N:P ratios and measured traits related to material costs, primary and secondary metabolism, and resource‐use. ResultsRelative to diploids, polyploids invested more N and P into cells, and tetraploids grew more with N enrichments, suggesting that material costs increase with ploidy level. Polyploids also generally exhibited strategies that could minimize material‐cost constraints over both long (reduced monoploid genome size) and short (more extreme transcriptome downsizing, reduced photosynthesis rates and terpene concentrations, enhanced N‐use efficiencies) evolutionary time periods. Furthermore, polyploids had lower transpiration rates but higher water‐use efficiencies than diploids, both of which were more pronounced under nutrient‐limiting conditions. ConclusionsN and P material costs increase with ploidy level, but material‐cost constraints might be lessened by resource allocation/investment mechanisms that can also alter ecological dynamics and selection. Our results enhance mechanistic understanding of how global increases in nutrients might provide a release from material‐cost constraints in polyploids that could impact ploidy (or genome‐size)‐specific performances, cytogeographic patterning, and multispecies community structuring.
more »
« less
Development of coarse-grained molecular dynamics model for poly(dimethyl-co-diphenyl)siloxane
Polydimethylsiloxane is an important polymeric material with a wide range of applications. However, environmental effects like low temperature can induce crystallization in the material with resulting changes in its structural...
more »
« less
- Award ID(s):
- 2323108
- PAR ID:
- 10548690
- Publisher / Repository:
- Royal Society of Chemistry
- Date Published:
- Journal Name:
- Soft Matter
- ISSN:
- 1744-683X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The ability to fabricate polymer matrix composite materials with continuous or discontinuous filler material, oriented in a user‐specified direction, enables implementing designer material properties, such as anisotropic mechanical, thermal, and electrical properties. Conventional fabrication methods rely on a mold, which limits specimen geometry and is difficult to implement. In contrast, additive manufacturing, including fused filament fabrication or fused deposition modeling, direct ink writing, or stereolithography, combined with a method to align filler material such as a mechanical force or an electric, magnetic, shear force, or ultrasound wave field, enables 3D printing polymer matrix composite material specimens with complex geometry and aligned filler material, without the need for a mold. Herein, we review the combinations of fabrication and filler material alignment methods used to fabricate polymer matrix composite materials, in terms of operating and design parameters including size, resolution, print speed, filler material alignment time, polymer matrix and filler material requirements, and filler manipulation requirements. The operating envelope of each fabrication method is described and their advantages, disadvantages, and limitations are discussed. Finally, different combinations of 3D printing and filler material alignment methods in the context of important engineering applications, such as structural materials, flexible electronics, and shape‐changing materials, are illustrated.more » « less
-
Renewable and degradable materials, formed using biopolymers as material precursors, are sought after in pharmaceutical, biomedical, and industrial fields. Silk-based biomaterials, primarily derived from the silk fibroin protein of the Bombyx mori (B. mori) silkworm, have advantageous mechanical properties, biocompatibility, and commercial availability. Recent efforts aim to expand the range of achievable silk-based biomaterial properties via alternative sources of silk proteins with different sequences and structures. These structural distinctions drive differences in physical and chemical properties of silk fibers, primarily due to the varying degree of crystallinity in the polymers. For the development of alternative silk-based materials, silk from Plodia interpunctella (P. interpunctella), a small agricultural pest that infests and damages food products via silk production, is evaluated. Early investigations have highlighted differences between P. interpunctella and B. mori silk fibroin proteins, however P. interpunctella silk still largely lacks characterization and optimization on both the silk fiber and bulk material level. This work evaluates the structural, thermal, mechanical, and cell-material properties of non-degummed and degummed P. interpunctella silk as a raw material for biomaterial fabrication and discusses the benefits and limitations of these proteins as new biopolymers. Observed properties are used to identify links between silk fibroin protein sequence and fiber function in addition to forming hypotheses in how P. interpunctella silk-based biomaterials will perform in comparison to other natural biopolymers. Future work aims to develop methods to process P. interpunctella silk into material formats, utilizing the material characteristics determined here as a baseline for shifts in material performance.more » « less
-
The extent of inequality in material wealth across different types of societies is well established. Less clear, however, is how material wealth is associated with relational wealth, and the implications of such associations for material wealth inequality. Theory and evidence suggest that material wealth both guides, and is patterned by, relational wealth. While existing comparative studies typically assume complementarity between different types of wealth, such associations may differ for distinct kinds of relational wealth. Here, we first review the literature to identify how and why different forms of relational wealth may align. We then turn to an analysis of household-level social networks (food sharing, gender-specific friendship and gender-specific co-working networks) and material wealth data from a rural community in Pemba, Zanzibar. We find that (i) the materially wealthy have most relational ties, (ii) the associations between relational and material wealth—as well as relational wealth more generally—are patterned by gender differences, and (iii) different forms of relational wealth have similar structural properties and are closely aligned. More broadly, we show how examining the patterning of distinct types of relational wealth provides insights into how and why inequality in material wealth remains muted in a community undergoing rapid economic change. This article is part of the theme issue ‘Evolutionary ecology of inequality’.more » « less
-
Abstract Recent philosophical work on causation has focused on distinctions across types of causal relationships. This paper argues for another distinction that has yet to receive attention in this work. This distinction has to do with whether causal relationships have “material continuity,” which refers to the reliable movement of material from cause to effect. This paper provides an analysis of material continuity and argues that causal relationships with this feature (1) are associated with a unique explanatory perspective, (2) are studied with distinct causal investigative methods, and (3) provide different types of causal control over their effects.more » « less
An official website of the United States government

