Abstract AimThe Neotropics constitute the most biodiverse region of the world, yet its patterns of diversification and speciation differ among Neotropical areas and are not equally well understood. Particularly, avian evolutionary processes are understudied in the open habitats of temperate South America, where the role of glacial cycles is not clear. We analysed the evolutionary history of a Neotropical widespread bird species as a case study to evaluate its continental‐scale patterns and processes of diversification, with a focus on Patagonia. LocationOpen habitats of the Neotropics. TaxonVanellus chilensis(Aves, Charadriiformes). MethodsWe obtained reduced representation genomic and mitochondrial data from the four subspecies ofV. chilensisto perform a phylogenetic/phylogeographical analysis and study the evolutionary history of the species. We complemented these analyses with the study of vocalizations, a reproductive signal in birds. ResultsThe initial diversification event withinV. chilensis, approximately 600,000 years ago, split a Patagonian lineage from one containing individuals from the rest of the Neotropics. We found considerable gene flow between these two lineages and a contact zone in northern Patagonia, and showed that genomic admixture extends to northwestern Argentina. Shallower divergence was detected between the two non‐Patagonian subspecies, which are separated by the Amazon River. Vocalizations were significantly different between the two main lineages and were intermediate in their temporal and frequency characteristics in the contact zone. Main ConclusionsPatagonian populations ofV. chilensisare clearly differentiated from those of the rest of the Neotropics, possibly as a consequence of Pleistocene glaciations. A secondary contact zone in northern Patagonia with extensive gene flow among lineages appears to be the consequence of post‐glacial, northward expansion of the Patagonian populations. Future analyses focused on the dynamics of the contact zone will allow us to establish whether the species continues to diverge or is homogenizing. 
                        more » 
                        « less   
                    
                            
                            Genetic and phenotypic differentiation in Thamnophilus ruficapillus , a Neotropical passerine with disjunct distribution in the Andean and Atlantic forests
                        
                    
    
            The Andean and Atlantic forests are separated by the open vegetation corridor, which acts as a geographic barrier. However, these forests experienced cycles of connection and isolation in the past, which shaped the phylogeographic patterns of their biotas. We analysed the evolutionary history of the rufous‐capped antshrikeThamnophilus ruficapillus, a species with a disjunct distribution in the Atlantic and Andean forests and thus an appropriate model to study the effect of the open vegetation corridor and the Andes on the diversification of the Neotropical avifauna. We performed a phylogenetic/phylogeographic analysis, including the five subspecies, using mitochondrial and nuclear genomic DNA, and studied their differences in vocalizations and plumage coloration. Both the mitochondrial and nuclear DNA evidenced a marked phylogeographic structure with three differentiated lineages that diverged without signs of gene flow in the Pleistocene (1.0–1.7 million years ago): one in the Atlantic Forest and two in the Andean forest. However, the two Andean lineages do not coincide with the two disjunct areas of distribution of the species in the Andes. Vocalizations were significantly different between most subspecies, but their pattern of differentiation was discordant with that of the nuclear and mitochondrial DNA. In fact, we did not find song differentiation between the subspecies of the Atlantic Forest and that of the northwestern Bolivian Andes, even though they differ genetically and belong to different lineages. Consistently, no differences were found in plumage coloration between the subspecies of the Atlantic Forest and that of the southern Andes. Our results suggest a complex evolutionary history in this species, which differentiated both due to dispersion across the open vegetation corridor, likely during a period of connection between the Andean and Atlantic forests, and the effect of the Bolivian Altiplano as a geographic barrier. In both cases, Pleistocene climatic oscillations appear to have influenced the species diversification. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2232929
- PAR ID:
- 10548882
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Journal of Avian Biology
- ISSN:
- 0908-8857
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Our knowledge of the biodiversity of Asia and Australasia continues to expand with more focused studies on systematics of various groups and their biogeography. Historically, fluctuating sea levels and cyclic connection and separation of now-disjunct landmasses have been invoked to explain the accumulation of biodiversity via species pump mechanisms. However, recent research has shown that geological shifts of the mainland and species dispersal events may be better explanations of the biodiversity in these regions. We investigate these processes using the poorly studied and geographically widespread Mud Snakes (Serpentes: Homalopsidae) using a target capture approach of ~4,800 nuclear loci from fresh tissues and supplemental mitochondrial data from formalin tissues from museum specimens. We use these datasets to reconstruct the first resolved phylogeny of the group, identify their biogeographic origins, and test hypotheses regarding the roles of sea-level change and habitat selection on their diversification. Divergence dating and ancestral range estimation yielded support for an Oligocene origin and diversification from mainland Southeast Asia and Sundaland in the rear-fanged group ~20 million years ago, followed by eastward and westward dispersal. GeoHiSSE models indicate that niche expansion of ancestral, rear-fanged lineages into aquatic environments did not impact their diversification rates. Our results highlight that Pleistocene sea-level changes and habitat specificity did not primarily lead to the extant species richness of Homalopsidae and that, alternatively, geological shifts in mainland Southeast Asia may have been a major driver of diversity in this group. We also emphasize the importance of using fresh and degraded tissues, and both nuclear and mitochondrial DNA, for filling knowledge gaps in poorly known but highly diverse and conceptually important groups. Here, Homalopsidae represents a non-traditional but effective model study system for understanding transitions between terrestrial, marine, and freshwater environments.more » « less
- 
            Abstract In birds, the process of speciation is closely associated with transitions in ornamentation, including coloration, plumage pattern, and song. To investigate the origins of these shifts and their connection to genetic changes, we conducted a study on one of the most highly ornamented songbirds, the Painted Bunting (Passerina ciris). The male Painted Buntings exhibits a stunning array of colors, with a red chest, blue head, green back, green coverts, and pink rump. In addition, Painted Buntings show a high level of genetic structure, with eastern and western populations that have fixed genetic differences in both nuclear and mitochondrial genes. Using non-invasive spectrophotometry techniques, we measured the coloration of six plumage patches on 88 museum specimens of male Painted Buntings in definitive plumage from across the range of the species. We predicted that there would be divergence between the genetically distinct eastern and western populations in ornamental coloration that is perceptible to a bunting but imperceptible to a human observer. However, we measured no consistent nor substantial difference in the plumage coloration of males from different populations. The observation of substantial divergence in nuclear and mitochondrial genotype with no change in ornamental coloration between populations of a brightly colored bird has important implications for the role of sexual selection in the process of speciation.more » « less
- 
            Chaetodipus nelsoni occurs on rocky substrates across the Mexican Altiplano. We investigated phylogeographic diversity within the species using morphologic, karyotypic, and molecular data. Data from nuclear (AFLP) and mitochondrial DNA support three distinct genetic groups with minimal substructuring coincident with biogeographic barriers previously identified in the Chihuahuan Desert and drainage basins of the Altiplano. We examined the morphological and karyotypic data in light of the molecular data. The results support recognition of three species within the currently accepted widespread C. nelsoni: 1) C. nelsoni restricted to a distribution centered on the El Salado River Basin; 2) elevation of C. n. collis to species, with two subspecies: one centered on Trans-Pecos Texas, the other on the Mapimí Basin (new subspecies); and 3) recognition of a new species, C. durangae, centered on the Nazas Basin and upper Río Mezquital drainage.more » « less
- 
            Lozier, Jeffrey (Ed.)Abstract Coloration is an important phenotypic trait for taxonomic studies and has been widely used for identifying insect species and populations. However, coloration can be a poor diagnostic character for insect species that exhibit high polymorphism in this trait, which can lead to over-splitting of taxonomic units. In orchid bees, color variation has been interpreted by different taxonomists as either polymorphism associated with Müllerian mimicry complexes or diagnostic traits for species identification. Despite this uncertainty, integrative approaches that incorporate multiple independent datasets to test the validity of hair coloration as a character that identifies independent evolutionary units have not been used. Here, we use phylogenomic data from Ultraconserved Elements (UCEs) to explore whether color phenotypes in the widespread orchid bee species complexes Eulaema meriana and Eulaema bombiformis (Hymenoptera: Apidae: Euglossini) correspond to independent lineages or polymorphic trait variation within species. We find that lineages within both species are structured according to geography and that color morphs are generally unassociated with evolutionarily independent groups except for populations located in the Atlantic Forest of Brazil. We conclude that there is compelling evidence that E. atleticana and E. niveofasciata are subspecies of E. meriana and E. bombiformis, respectively, and not different species as previously suggested. Therefore, we recognize Eulaema meriana atleticanacomb. n. and Eulaema bombiformis niveofasciatacomb. n. and discuss their morphological characteristics. We make recommendations on the use of color traits for orchid bee taxonomy and discuss the significance of subspecies as evolutionary units relevant for conservation efforts.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    