skip to main content


Title: Synoptic Influences on the Diurnal Cycle of Rainfall over Western Puerto Rico
Abstract

The objective of this study is to understand rainfall processes over tropical islands by identifying synoptic conditions that influence the diurnal cycle of rainfall over western Puerto Rico. Summer rainfall over Puerto Rico is dominated by its afternoon peak, yet there is large variability in its behavior that remains challenging to predict. We use radiosonde and airborne data collected through the NASA Convective Processes Experiment—Aerosols and Winds (CPEX-AW) field campaign (August–September 2021) to achieve our objective, in addition to the network of surface station data over the island. We find that the background wind speed and humidity have strong influences on afternoon rainfall through different mechanisms. A stronger background wind inhibits afternoon rainfall likely by reducing land–sea thermal contrast and weakening sea-breeze convergence over the island. At the same time, an inversion layer often forms with a stronger background wind that further inhibits deep convection. When the background wind is weak and sea breezes are prominent, afternoon rainfall increases exclusively over the island, while limited rainfall appears over the surrounding ocean. However, enhanced rainfall still occurs over the island with weak sea breezes if humidity is high, accompanied by enhanced rainfall over the surrounding ocean due to the offshore movement and development of convective storms. The sources of variability in background wind and humidity are mostly independent, resulting in a wide range of synoptic conditions and associated effects on the island rainfall. This expanded understanding of the mechanisms causing variability of diurnal rainfall can lead to improved forecasts over Puerto Rico and other tropical islands.

 
more » « less
PAR ID:
10548997
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Monthly Weather Review
Volume:
152
Issue:
10
ISSN:
0027-0644
Format(s):
Medium: X Size: p. 2341-2359
Size(s):
p. 2341-2359
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    This study aims to determine the impacts of tropical island processes on local convective storms. An analysis of rain events on the island of Puerto Rico between 1 June 2015 and 31 July 2016 showed that local island‐enhanced western storms accounted for 89 of 322 storms. This period is of particular importance for the Caribbean as 2015 was one of the driest years on record. While large‐scale influences such as the El Niño–Southern Oscillation, the North Atlantic Oscillation, African easterly waves, and Saharan dust transport modulate moisture conditions in the region, correlations between precipitation and El Niño–Southern Oscillation (−0.14), North Atlantic Oscillation (−0.42), and Saharan dust (0.1) for 1980–2016 ranged from weak to moderate. Local data for the island of Puerto Rico from weather stations, the Convection, Aerosol, and Synoptic‐Effects in the Tropics field campaign, and the North American Mesoscale model support the initiation or enhancement of convective rain events due to local island processes. In particular, analysis of surface wind speed/direction, convective available potential energy, lifted index, and the bulk Richardson number substantiate local instability due to surface heating, orographic uplift, and sea breeze trade‐wind convergence. These convective forcings along with available precipitable water in excess of 50 mm ultimately led to intense storms despite severe rainfall‐mitigating dust episodes for which aerosol optical thickness exceeded 0.4. These results may have major implications for considering the impacts of local air‐sea‐land interactions on rainfall over other tropical islands.

     
    more » « less
  2. Abstract. This study examines the diurnal variation in precipitation over Hainan Island in the South China Sea using gauge observations from 1951 to 2012 and Climate Prediction Center MORPHing technique (CMORPH) satellite estimates from 2006 to 2015, as well as numerical simulations. The simulations are the first to use climatological mean initial and lateral boundary conditions to study the dynamic and thermodynamic processes (and the impacts of land–sea breeze circulations) that control the rainfall distribution and climatology. Precipitation is most significant from April to October and exhibits a strong diurnal cycle resulting from land–sea breeze circulations. More than 60% of the total annual precipitation over the island is attributable to the diurnal cycle with a significant monthly variability. The CMORPH and gauge datasets agree well, except that the CMORPH data underestimate precipitation and have a 1 h peak delay. The diurnal cycle of the rainfall and the related land– sea breeze circulations during May and June were well captured by convection-permitting numerical simulations with the Weather Research and Forecasting (WRF) model, which were initiated from a 10-year average ERA-Interim reanalysis. The simulations have a slight overestimation of rainfall amounts and a 1 h delay in peak rainfall time. The diurnal cycle of precipitation is driven by the occurrence of moist convection around noontime owing to low-level convergence associated with the sea-breeze circulations. The precipitation intensifies rapidly thereafter and peaks in the afternoon with the collisions of sea-breeze fronts from different sides of the island. Cold pools of the convective storms contribute to the inland propagation of the sea breeze. Generally, precipitation dissipates quickly in the evening due to the cooling and stabilization of the lower troposphere and decrease of boundary layer moisture. Interestingly, the rather high island orography is not a dominant factor in the diurnal variation in precipitation over the island. 
    more » « less
  3. Abstract

    This study investigates the diurnal cycle of rainfall, convection, and precipitation features (PFs) over the Maritime Continent (MC). The study uses Tropical Rainfall Measuring Missions (TRMM) Multi‐satellite Precipitation Analysis (TMPA; product 3b42), TRMM PFs, and convective classifications from the International Satellite Cloud Climatology Project (ISCCP) data. Together, these satellites dataset paint a comprehensive picture of the diurnal cycle of rainfall and convection over the MC consistent with past research. Isolated convection initiates around midday over the higher terrain of the large islands (Java, Borneo, and Papua New Guinea). The convection becomes more organized through the afternoon and evening, leading to peak rainfall over the islands around 1800–2100 local standard time (LST). Over the next few hours, some of that rainfall transitions to stratiform rain over land. The convection then propagates offshore overnight with rainfall peaking along the coast around 0300–0600 LST and then over ocean around 0600–0900 LST. ISCCP data suggests that the overnight and early morning convection is more associated with isolated convective cells than the remnants of mesoscale convective systems. The coastal and oceanic diurnal ranges also seem to be larger in stratiform rainfall, in contrast to land where convective rainfall dominates. Seasonally the diurnal variation of rainfall, convection, and PFs over the region have greater amplitude during DJF (December, January, and February) than JJA (June, July, and August). Given the MC's critical role in the global climate, examining variations in these cycles with respect to the Madden–Julian Oscillation and equatorial waves may ultimately lead to improved subseasonal weather forecasts.

     
    more » « less
  4. The influence of the boreal summer intraseasonal oscillation (BSISO) on the diurnal cycle of coastal rainfall over south China during the mei-yu (heavy rainfall) season is investigated using the OLR-based Madden–Julian oscillation index (OMI), satellite rainfall data, and atmospheric reanalysis. Results show that the mei-yu season coastal rainfall is enhanced during the BSISO phase 1 (convectively active phase over the western Indian Ocean), with 25% greater rainfall than the climatological regional mean. Rainfall is suppressed during the BSISO phases 4 and 5 (convectively active phase in the Bay of Bengal and South China Sea), with negative rainfall anomalies of 39% and 46%, respectively. During phase 1, the rainfall enhancement is mostly over the inland region during the afternoon, while there is little diurnal variability of the rainfall anomaly offshore. During phases 4 and 5, the rainfall suppression is considerably stronger over the offshore region in the morning, whereas stronger rainfall suppression occurs inland during the afternoon. In phase 8, positive rainfall anomalies are found over the offshore region with a peak from the morning to the early afternoon, whereas negative rainfall anomalies are found over the inland region with the strongest suppression in the late afternoon. Analysis of phase composites and horizontal moisture advection shows that the diurnal variation of rainfall anomalies over the south China coastal area during different BSISO phases can be interpreted as the interaction between the large-scale anomalous moisture advection and the local land and sea breeze circulations.

     
    more » « less
  5. Abstract. This study examines the diurnal variation in precipitation over Hainan Island in the South China Sea using gauge observations from 1951 to 2012 and Climate Prediction Center MORPHing technique (CMORPH) satellite estimates from 2006 to 2015, as well as numerical simulations. The simulations are the first to use climatological mean initial and lateral boundary conditions to study the dynamic and thermodynamic processes (and the impacts of land–sea breeze circulations) that control the rainfall distribution and climatology. Precipitation is most significant from April to October and exhibits a strong diurnal cycle resulting from land–sea breeze circulations. More than 60% of the total annual precipitation over the island is attributable to the diurnal cycle with a significant monthly variability. The CMORPH and gauge datasets agree well, except that the CMORPH data underestimate precipitation and have a 1h peak delay. The diurnal cycle of the rainfall and the related land–sea breeze circulations during May and June were well captured by convection-permitting numerical simulations with the Weather Research and Forecasting (WRF) model, which were initiated from a 10-year average ERA-Interim reanalysis. The simulations have a slight overestimation of rainfall amounts and a 1h delay in peak rainfall time. The diurnal cycle of precipitation is driven by the occurrence of moist convection around noontime owing to low-level convergence associated with the sea-breeze circulations. The precipitation intensifies rapidly thereafter and peaks in the afternoon with the collisions of sea-breeze fronts from different sides of the island. Cold pools of the convective storms contribute to the inland propagation of the sea breeze. Generally, precipitation dissipates quickly in the evening due to the cooling and stabilization of the lower troposphere and decrease of boundary layer moisture. Interestingly, the rather high island orography is not a dominant factor in the diurnal variation in precipitation over the island.

     
    more » « less