skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Enhancing metasurface fabricability through minimum feature size enforcement
The metasurfaces have shown great potential for miniaturizing conventional optics while offering extended flexibility. Recently, there has been considerable interest in using algorithms to generate meta-atom shapes for these metasurfaces, as they offer vast design freedom and not biased by the human intuition. However, these complex designs significantly increase the difficulty of fabrication. To address this, we introduce a design process that rigorously enforces the fabricability of both the material-filled (fill) and empty (void) regions in a metasurface design. This process takes into account specific constraints regarding the minimum feature size for each region. Additionally, it corrects any violations of these constraints across the entire device, ensuring only minimal impact on performance. Our method provides a practical way to create metasurface designs that are easy to fabricate, even with complex shapes, hence improving the overall production yield of these advanced meta-optical components.  more » « less
Award ID(s):
2305139 2047446
PAR ID:
10549309
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
De Gruyter
Date Published:
Journal Name:
Nanophotonics
Volume:
13
Issue:
17
ISSN:
2192-8614
Page Range / eLocation ID:
3147 to 3154
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Considerable recent research interest has focused on the possibility of using metasurfaces for manipulation of terahertz wavefronts. For example, metasurfaces allow a beam to be targeted in any desired direction using strategically placed meta-elements. With rapid prototyping techniques, metasurfaces can be fabricated quickly and at a low cost. These techniques also permit the fabrication of metasurfaces on flexible substrates which can be bent easily. This opens the possibility of employing such devices as conformable arrays on non-flat surfaces. To explore this idea, we experimentally and numerically analyze the performance of a terahertz metasurface printed on paper, as a function of its radius of curvature. We observe that when the metasurface is bent, the direction of the refracted beam is minimally impacted and the performance of the metasurface remains very similar to when it is flat. This conclusion will simplify the design and modeling criteria for conformable metasurfaces. 
    more » « less
  2. null (Ed.)
    Lossless, reciprocal bianisotropic metasurfaces have the ability to control the amplitude, phase, and polarization of electromagnetic wavefronts. However, producing the responses that are necessary for achieving this control with physically realizable surfaces is a challenging task. Here, several design approaches for bianisotropic metasurfaces are reviewed that produce physically realizable metasurfaces using cascaded impedance sheets. In practice, three or four impedance sheets are often used to realize bianisotropic responses, which can result in narrowband designs that require the unit cells to be optimized in order to improve the performance of the metasurface. The notion of a metasurface quality factor is introduced for three-sheet metasurfaces to address these issues in a systematic manner. It is shown that the quality factor can be used to predict the bandwidth of a homogeneous metasurface, and it can also be used to locate problematic unit cells when designing inhomogeneous metasurfaces. Several design examples are provided to demonstrate the utility of the quality factor, including an impedance matching layer with maximal bandwidth and a gradient metasurface for plane wave refraction. In addition to these examples, several metasurfaces for polarization control are also reported, including an isotropic polarization rotator and an asymmetric circular polarizer. 
    more » « less
  3. Abstract Acoustic metasurfaces are at the frontier of acoustic functional material research owing to their advanced capabilities of wave manipulation at an acoustically vanishing size. Despite significant progress in the last decade, conventional acoustic metasurfaces are still fundamentally limited by their underlying physics and design principles. First, conventional metasurfaces assume that unit cells are decoupled and therefore treat them individually during the design process. Owing to diffraction, however, the non-locality of the wave field could strongly affect the efficiency and even alter the behavior of acoustic metasurfaces. Additionally, conventional acoustic metasurfaces operate by modulating the phase and are typically treated as lossless systems. Due to the narrow regions in acoustic metasurfaces’ subwavelength unit cells, however, losses are naturally present and could compromise the performance of acoustic metasurfaces. While the conventional wisdom is to minimize these effects, a counter-intuitive way of thinking has emerged, which is to harness the non-locality as well as loss for enhanced acoustic metasurface functionality. This has led to a new generation of acoustic metasurface design paradigm that is empowered by non-locality and non-Hermicity, providing new routes for controlling sound using the acoustic version of 2D materials. This review details the progress of non-local and non-Hermitian acoustic metasurfaces, providing an overview of the recent acoustic metasurface designs and discussing the critical role of non-locality and loss in acoustic metasurfaces. We further outline the synergy between non-locality and non-Hermiticity, and delineate the potential of using non-local and non-Hermitian acoustic metasurfaces as a new platform for investigating exceptional points, the hallmark of non-Hermitian physics. Finally, the current challenges and future outlook for this burgeoning field are discussed. 
    more » « less
  4. Abstract As 2D metamaterials, metasurfaces provide an unprecedented means to manipulate light with the ability to multiplex different functionalities in a single planar device. Currently, most pursuits of multifunctional metasurfaces resort to empirically accommodating more functionalities at the cost of increasing structural complexity, with little effort to investigate the intrinsic restrictions of given meta‐atoms and thus the ultimate limits in the design. In this work, it is proposed to embed machine‐learning models in both gradient‐based and nongradient optimization loops for the automatic implementation of multifunctional metasurfaces. Fundamentally different from the traditional two‐step approach that separates phase retrieval and meta‐atom structural design, the proposed end‐to‐end framework facilitates full exploitation of the prescribed design space and pushes the multifunctional design capacity to its physical limit. With a single‐layer structure that can be readily fabricated, metasurface focusing lenses and holograms are experimentally demonstrated in the near‐infrared region. They show up to eight controllable responses subjected to different combinations of working frequencies and linear polarization states, which are unachievable by the conventional physics‐guided approaches. These results manifest the superior capability of the data‐driven scheme for photonic design, and will accelerate the development of complex devices and systems for optical display, communication, and computing. 
    more » « less
  5. A general synthesis technique for beamforming metasurfaces is presented which utilizes accurate modeling techniques and rapid optimization methods. The metasurfaces considered consist of patterned metallic claddings supported by finite grounded dielectric substrates. The metasurfaces are modeled using integral equations which accurately account for all mutual coupling and finite dimensions. A beamforming metasurface is designed in three phases: an initial Direct Solve phase involving the solution of the integral equation via the method of moments to obtain a complex-valued initial design satisfying the desired far-field beam specifications, a subsequent Optimization phase to convert the complex-valued metasurface into a purely reactive metasurface, and a final Patterning phase to realize the metasurface as a patterned metallic cladding. The metasurface is optimized using an adjoint optimization method. The method calculates the gradient of the cost function in only two forward problem solutions. An example metasurface designed using this approach is presented. 
    more » « less