skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Shadow Mask Molecular Beam Epitaxy for In‐Plane Gradient Permittivity Materials
Abstract Infrared spectroscopy currently requires the use of bulky, expensive, and/or fragile spectrometers. For gas sensing, environmental monitoring, or other applications, an inexpensive, compact, robust on‐chip spectrometer is needed. One way to achieve this is through gradient permittivity materials, in which the material permittivity changes as a function of position in the plane. Here, synthesis of infrared gradient permittivity materials is demonstrated using shadow mask molecular beam epitaxy. The permittivity of the material changes as a function of position in the lateral direction, confining varying wavelengths of infrared light at varying horizontal locations. An electric field enhancement corresponding to wavenumbers ranging from ≈650 to 900 cm−1over an in‐plane width of ≈13 µm on the flat mesa of the sample is shown. An electric field enhancement corresponding to wavenumbers ranging from ≈900 to 1250 cm−1over an in‐plane width of ≈13 µm on the slope of the sample is also shown. These two different regions of electric field enhancement develop on two opposite sides of the material. This demonstration of a scalable method of creating in‐plane gradient permittivity material can be leveraged for the creation of a variety of miniature infrared devices, such as an ultracompact spectrometer.  more » « less
Award ID(s):
2116754 2102027
PAR ID:
10549321
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Advanced Functional Materials
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Infrared (IR) gradient permittivity materials are the potential building blocks of miniature IR‐devices such as an on‐chip spectrometer. The manufacture of materials with permittivities that vary in the horizontal plane is demonstrated using shadow mask molecular beam epitaxy in Si:InAs films. However, to be useful, the permittivity gradient needs to be of high crystalline quality and its properties need to be tunable. In this paper, it is shown that it can control the permittivity gradient length and steepness by varying the shadow mask thickness. Samples grown with similar growth parameters and with 200 and 500 µm mask thicknesses show permittivity gradient widths of 18 and 39 µm on the flat mesa on one side and 11 and 23 µm on the film slope on the other side, respectively. The gradient steepnesses are 23.3 and 11.3 cm−1/µm on the flat mesa and 21.8 and 9.1 cm−1/µm on the film slope, for samples made with the 200 and 500 µm masks, respectively. This work clearly shows the ability to control the in‐plane permittivity gradient in Si:InAs films, setting the stage for the creation of miniature IR devices. 
    more » « less
  2. ABSTRACT Dielectrophoresis (DEP) has been extensively researched over the years for filtration, separation, detection, and collection of micro/nano/bioparticles. Numerical models have historically been employed to predict particle trajectories in three‐dimensional (3D) DEP systems, but a common issue arises due to inherent noise near the edges of electrodes due to electric potential discontinuity, specifically when calculating electric field and gradient of electric field‐squared, . This noise can be reduced to a certain extent with a finer mesh density but results near the electrode edge still have significant error. Realizing the importance of particle‐electrode edge interactions prevalent in positive DEP systems, analytical solutions given by Sun et al. was incorporated to demonstrate an improved 3D model of interdigitated electrodes. The results of electric field and gradient of electric field‐squared of the numerical model and the improved analytical 3D model were compared, within a simulation space of 50 µm height, 10 µm width, and 50 µm length with interdigitated electrodes of the same width and gap of 10 µm. The DEP particle trajectory error due to the noise was quantified for different particle sizes at various heights above the electrode edge. For example, at 5 Vrms, a trapped 500 nm particles exhibited a velocity error of 104µm/s (it should have been zero). 
    more » « less
  3. Abstract Mid-infrared (MIR) spectrometers are invaluable tools for molecular fingerprinting and hyper-spectral imaging. Among the available spectroscopic approaches, GHz MIR dual-comb absorption spectrometers have the potential to simultaneously combine the high-speed, high spectral resolution, and broad optical bandwidth needed to accurately study complex, transient events in chemistry, combustion, and microscopy. However, such a spectrometer has not yet been demonstrated due to the lack of GHz MIR frequency combs with broad and full spectral coverage. Here, we introduce the first broadband MIR frequency comb laser platform at 1 GHz repetition rate that achieves spectral coverage from 3 to 13 µm. This frequency comb is based on a commercially available 1.56 µm mode-locked laser, robust all-fiber Er amplifiers and intra-pulse difference frequency generation (IP-DFG) of few-cycle pulses inχ(2)nonlinear crystals. When used in a dual comb spectroscopy (DCS) configuration, this source will simultaneously enable measurements with μs time resolution, 1 GHz (0.03 cm−1) spectral point spacing and a full bandwidth of >5 THz (>166 cm−1) anywhere within the MIR atmospheric windows. This represents a unique spectroscopic resource for characterizing fast and non-repetitive events that are currently inaccessible with other sources. 
    more » « less
  4. Abstract PdCoO 2 layered delafossite is the most conductive compound among metallic oxides, with a room-temperature resistivity of nearly $$2\,\mu \Omega \,{{{{{\rm{cm}}}}}}$$ 2 μ Ω cm , corresponding to a mean free path of about 600 Å. These values represent a record considering that the charge density of PdCoO 2 is three times lower than copper. Although its notable electronic transport properties, PdCoO 2 collective charge density modes (i.e. surface plasmons) have never been investigated, at least to our knowledge. In this paper, we study surface plasmons in high-quality PdCoO 2 thin films, patterned in the form of micro-ribbon arrays. By changing their width W and period 2 W , we select suitable values of the plasmon wavevector q , experimentally sampling the surface plasmon dispersion in the mid-infrared electromagnetic region. Near the ribbon edge, we observe a strong field enhancement due to the plasmon confinement, indicating PdCoO 2 as a promising infrared plasmonic material. 
    more » « less
  5. We design and characterize a novel axilens-based diffractive optics platform that flexibly combines efficient point focusing and grating selectivity and is compatible with scalable top-down fabrication based on a four-level phase mask configuration. This is achieved using phase-modulated compact axilens devices that simultaneously focus incident radiation of selected wavelengths at predefined locations with larger focal depths compared with traditional Fresnel lenses. In addition, the proposed devices are polarization-insensitive and maintain a large focusing efficiency over a broad spectral band. Specifically, here we discuss and characterize modulated axilens configurations designed for long-wavelength infrared (LWIR) in the 6 µm–12 µm wavelength range and in the 4 µm–6 µm midwavelength infrared (MWIR) range. These devices are ideally suited for monolithic integration atop the substrate layers of infrared focal plane arrays and for use as compact microspectrometers. We systematically study their focusing efficiency, spectral response, and cross-talk ratio; further, we demonstrate linear control of multiwavelength focusing on a single plane. Our design method leverages Rayleigh–Sommerfeld diffraction theory and is validated numerically using the finite element method. Finally, we demonstrate the application of spatially modulated axilenses to the realization of a compact, single-lens spectrometer. By optimizing our devices, we achieve a minimum distinguishable wavelength interval of Δ<#comment/> λ<#comment/> = 240 n m at λ<#comment/> c = 8 µ<#comment/> m and Δ<#comment/> λ<#comment/> = 165 n m at λ<#comment/> c = 5 µ<#comment/> m . The proposed devices add fundamental spectroscopic capabilities to compact imaging devices for a number of applications ranging from spectral sorting to LWIR and MWIR phase contrast imaging and detection. 
    more » « less