skip to main content


Title: Underway measurement of cyanobacterial microcystins using a surface plasmon resonance sensor on an autonomous underwater vehicle
Abstract

Freshwater cyanobacterial harmful algal blooms (CHABs) are a well‐known global public health threat. Monitoring and early detection of CHAB toxins are currently accomplished using labor‐intensive sampling techniques and subsequent shore‐based analyses, with results typically reported 24–48 h after sample collection. We have developed and implemented an uncrewed, autonomous mobile sampler‐analytical system capable of conducting targeted in situ toxin measurements in < 2 h. A surface plasmon resonance (SPR) instrument was combined with the environmental sample processor (ESP) to fully automate detection and quantification of particle‐associated cyanobacterial microcystins (pMC). This sensor‐sampler system was integrated with a long‐range autonomous underwater vehicle (LRAUV) and deployed in western Lake Erie for field trials in the summer of 2021. The LRAUV was remotely piloted to acquire samples at selected locations within and adjacent to a CHAB. Sixteen pMC measurements ranging from 0.09 to 0.55 μg/L lake water were obtained over a 14‐day period without recovery of the LRAUV. The SPR/ESP/LRAUV system complements existing satellite, aerial, and manual sampling CHAB survey techniques, and could be used to enhance predictive models that underpin bloom and toxicity forecasts. This system is also extensible to detection of other algal toxins in freshwater and marine environments, with its near real‐time assessment of bloom toxin levels potentially offering additional socioeconomic benefits and public health protection in a variety of settings.

 
more » « less
PAR ID:
10549392
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  more » ;  ;   « less
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Limnology and Oceanography: Methods
Volume:
22
Issue:
9
ISSN:
1541-5856
Format(s):
Medium: X Size: p. 681-699
Size(s):
p. 681-699
Sponsoring Org:
National Science Foundation
More Like this
  1. Biomolecular analyses are used to investigate the dynamics of cyanobacterial harmful algal blooms (cyanoHABs), with samples collected during monitoring often analyzed by qPCR and sometimes amplicon and metagenomic sequencing. However, cyanoHAB research and monitoring programs face operational constraints due to the reliance on human resources for sample collections. To address this impediment, a third-generation Environmental Sample Processor (3G ESP) integrated with a long-range autonomous underwater vehicle (LRAUV) was tested during seasonal blooms of Microcystis in western Lake Erie (WLE) in 2018 and 2019. The LRAUV-3G ESP successfully performed flexible, autonomous sampling across a wide range of cyanoHAB conditions, and results indicated equivalency between autonomous and manual methods. No significant differences were found between LRAUV-3G ESP and manual sample collection and handling methods in the 12 parameters tested. Analyzed parameters included concentrations of total cyanobacteria and microcystin toxin gene via qPCR; relative abundances of bacterial amplicon sequence variants (ASVs) from 16S rRNA gene amplicon sequencing; and community diversity measures from both 16S amplicon and metagenomic sequencing. The LRAUV-3G ESP provided additional sampling capacity and revealed differences between field seasons for bacterial taxa and concentrations of total cyanobacteria and microcystin toxin gene. Metagenomic analysis of multiple microcystin toxin genes corroborated the use of the mcyE gene as a proxy for the genomic potential of WLE cyanoHABs to produce microcystin. Overall, this study provides support for the use of autonomous ‘omics capability in WLE to help expand the spatial and temporal coverage of cyanoHAB monitoring operations. 
    more » « less
  2. Nojiri, Hideaki (Ed.)
    ABSTRACT In the oligotrophic oceans, key autotrophs depend on “helper” bacteria to reduce oxidative stress from hydrogen peroxide (H 2 O 2 ) in the extracellular environment. H 2 O 2 is also a ubiquitous stressor in freshwaters, but the effects of H 2 O 2 on autotrophs and their interactions with bacteria are less well understood in freshwaters. Naturally occurring H 2 O 2 in freshwater systems is proposed to impact the proportion of microcystin-producing (toxic) and non-microcystin-producing (nontoxic) Microcystis in blooms, which influences toxin concentrations and human health impacts. However, how different strains of Microcystis respond to naturally occurring H 2 O 2 concentrations and the microbes responsible for H 2 O 2 decomposition in freshwater cyanobacterial blooms are unknown. To address these knowledge gaps, we used metagenomics and metatranscriptomics to track the presence and expression of genes for H 2 O 2 decomposition by microbes during a cyanobacterial bloom in western Lake Erie in the summer of 2014. katG encodes the key enzyme for decomposing extracellular H 2 O 2 but was absent in most Microcystis cells. katG transcript relative abundance was dominated by heterotrophic bacteria. In axenic Microcystis cultures, an H 2 O 2 scavenger (pyruvate) significantly improved growth rates of one toxic strain while other toxic and nontoxic strains were unaffected. These results indicate that heterotrophic bacteria play a key role in H 2 O 2 decomposition in Microcystis blooms and suggest that their activity may affect the fitness of some Microcystis strains and thus the strain composition of Microcystis blooms but not along a toxic versus nontoxic dichotomy. IMPORTANCE Cyanobacterial harmful algal blooms (CHABs) threaten freshwater ecosystems globally through the production of toxins. Toxin production by cyanobacterial species and strains during CHABs varies widely over time and space, but the ecological drivers of the succession of toxin-producing species remain unclear. Hydrogen peroxide (H 2 O 2 ) is ubiquitous in natural waters, inhibits microbial growth, and may determine the relative proportions of Microcystis strains during blooms. However, the mechanisms and organismal interactions involved in H 2 O 2 decomposition are unexplored in CHABs. This study shows that some strains of bloom-forming freshwater cyanobacteria benefit from detoxification of H 2 O 2 by associated heterotrophic bacteria, which may impact bloom development. 
    more » « less
  3. With a long evolutionary history and a need to adapt to a changing environment, cyanobacteria in freshwater systems use specialized metabolites for communication, defense, and physiological processes. Furthermore, many cyanobacterial specialized metabolites and toxins present significant human health concerns due to their liver toxicity and their potential impact to drinking water. Gaps in knowledge exist with respect to changes in species diversity and toxin production during a cyanobacterial bloom (cyanoHAB) event; addressing these gaps will improve understanding of impacts to public and ecological health. In the current report we detail community and toxin composition dynamics during a late bloom period. Species diversity decreased at all study sites over the course of the bloom event, and toxin production reached a maximum at the midpoint of the event. We also isolated three new microcystins from a Microcystis dominated bloom (1–3), two of which contained unusual doubly homologated tyrosine residues (1 and 2). This work provokes intriguing questions with respect to the use of allelopathy by organisms in these systems and the presence of emerging toxic compounds that can impact public health. 
    more » « less
  4. Rudi, Knut (Ed.)
    ABSTRACT Cyanobacterial harmful algal blooms (cyanoHABs) degrade freshwater ecosystems globally. Microcystis aeruginosa often dominates cyanoHABs and produces microcystin (MC), a class of hepatotoxins that poses threats to human and animal health. Microcystin toxicity is influenced by distinct structural elements across a diversity of related molecules encoded by variant mcy operons. However, the composition and distribution of mcy operon variants in natural blooms remain poorly understood. Here, we characterized the variant composition of mcy genes in western Lake Erie Microcystis blooms from 2014 and 2018. Sampling was conducted across several spatial and temporal scales, including different bloom phases within 2014, extensive spatial coverage on the same day (2018), and frequent, autonomous sampling over a 2-week period (2018). Mapping of metagenomic and metatranscriptomic sequences to reference sequences revealed three Microcystis mcy genotypes: complete (all genes present [ mcyA–J ]), partial (truncated mcyA , complete mcyBC , and missing mcyD–J ), and absent (no mcy genes). We also detected two different variants of mcyB that may influence the production of microcystin congeners. The relative abundance of these genotypes was correlated with pH and nitrate concentrations. Metatranscriptomic analysis revealed that partial operons were, at times, the most abundant genotype and expressed in situ , suggesting the potential biosynthesis of truncated products. Quantification of genetic divergence between genotypes suggests that the observed strains are the result of preexisting heterogeneity rather than de novo mutation during the sampling period. Overall, our results show that natural Microcystis populations contain several cooccurring mcy genotypes that dynamically shift in abundance spatiotemporally via strain succession and likely influence the observed diversity of the produced congeners. IMPORTANCE Cyanobacteria are responsible for producing microcystins (MCs), a class of potent and structurally diverse toxins, in freshwater systems around the world. While microcystins have been studied for over 50 years, the diversity of their chemical forms and how this variation is encoded at the genetic level remain poorly understood, especially within natural populations of cyanobacterial harmful algal blooms (cyanoHABs). Here, we leverage community DNA and RNA sequences to track shifts in mcy genes responsible for producing microcystin, uncovering the relative abundance, expression, and variation of these genes. We studied this phenomenon in western Lake Erie, which suffers annually from cyanoHAB events, with impacts on drinking water, recreation, tourism, and commercial fishing. 
    more » « less
  5. Cyanobacterial harmful algal proliferations (cyanoHAPs) are increasingly associated with dog and livestock deaths when benthic mats break free of their substrate and float to the surface. Fatalities have been linked to neurotoxicosis from anatoxins, potent alkaloids produced by certain genera of filamentous cyanobacteria. After numerous reports of dog illnesses and deaths at a popular recreation site on Lady Bird Lake, Austin, Texas in late summer 2019, water and floating mat samples were collected from several sites along the reservoir. Water quality parameters were measured and mat samples were maintained for algal isolation and DNA identification. Samples were also analyzed for cyanobacterial toxins using LC-MS. Dihydroanatoxin-a was detected in mat materials from two of the four sites (0.6–133 ng/g wet weight) while water samples remained toxin-free over the course of the sampling period; no other cyanobacterial toxins were detected. DNA sequencing analysis of cyanobacterial isolates yielded a total of 11 genera, including Geitlerinema, Tyconema, Pseudanabaena, and Phormidium/Microcoleus, taxa known to produce anatoxins, including dihydroanatoxin, among other cyanotoxins. Analyses indicate that low daily upriver dam discharge, higher TP and NO3 concentrations, and day of the year were the main parameters associated with the presence of toxic floating cyanobacterial mats.

     
    more » « less