Neural codecs have demonstrated strong performance in high-fidelity compression of audio signals at low bitrates. The token-based representations produced by these codecs have proven particularly useful for generative modeling. While much research has focused on improvements in compression ratio and perceptual transparency, recent works have largely overlooked another desirable codec property -- \textit{idempotence}, the stability of compressed outputs under multiple rounds of encoding. We find that state-of-the-art neural codecs exhibit varied degrees of idempotence, with some degrading audio outputs significantly after as few as three encodings. We investigate possible causes of low idempotence and devise a method for improving idempotence through fine-tuning a codec model. We then examine the effect of idempotence on a simple conditional generative modeling task, and find that increased idempotence can be achieved without negatively impacting downstream modeling performance -- potentially extending the usefulness of neural codecs for practical file compression and iterative generative modeling workflows.
more »
« less
VcLLM: Video Codecs are Secretly Tensor Codecs
- Award ID(s):
- 2112562
- PAR ID:
- 10549450
- Publisher / Repository:
- https://arxiv.org/
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Neural speech codecs have revolutionized speech coding, achieving higher compression while preserving audio fidelity. Beyond compression, they have emerged as tokenization strategies, enabling language modeling on speech and driving paradigm shifts across various speech processing tasks. Despite these advancements, their robustness in noisy environments remains underexplored, raising concerns about their generalization to real-world scenarios. In this work, we systematically evaluate neural speech codecs under various noise conditions, revealing non-trivial differences in their robustness. We further examine their linearity properties, uncovering non-linear distortions which partly explain observed variations in robustness. Lastly, we analyze their frequency response to identify factors affecting audio fidelity. Our findings provide critical insights into codec behavior and future codec design, as well as emphasizing the importance of noise robustness for their real-world integration.more » « less
An official website of the United States government

