skip to main content


This content will become publicly available on October 17, 2025

Title: Three-dimensional, multi-wavelength beam formation with integrated metasurface optics for Sr laser cooling

We demonstrate the formation of a complex, multi-wavelength, three-dimensional laser beam configuration with integrated metasurface (MS) optics. Our experiments support the development of a compact Sr optical-lattice clock, which leverages magneto-optical trapping at 461 nm and 689 nm without bulk free-space optics. We integrate six mm-scale metasurfaces on a fused silica substrate and illuminate them with light from optical fibers. The metasurfaces provide full control of beam pointing, divergence, and polarization to create the laser configuration for a magneto-optical trap. We report the efficiency and integration of the visible laser beam configuration, demonstrating the suitability of metasurface optics for atomic laser cooling.

 
more » « less
PAR ID:
10549540
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Letters
Volume:
49
Issue:
21
ISSN:
0146-9592; OPLEDP
Format(s):
Medium: X Size: Article No. 6013
Size(s):
Article No. 6013
Sponsoring Org:
National Science Foundation
More Like this
  1. Metasurfaces are a new class of diffractive optical elements with subwavelength elements whose behavior can be lithographically tailored. By leveraging form birefringence, metasurfaces can serve as multifunctional freespace polarization optics. Metasurface gratings are novel, to the best of our knowledge, polarimetric components that integrate multiple polarization analyzers into a single optical element enabling the realization of compact imaging polarimeters. The promise of metasurfaces as a new polarization building block is contingent on the calibration of metagrating-based optical systems. A prototype metasurface full Stokes imaging polarimeter is compared to a benchtop reference instrument using an established linear Stokes test for 670, 532, and 460 nm gratings. We propose a complementary full Stokes accuracy test and demonstrate it using the 532 nm grating. This work presents methods and practical considerations involved in producing accurate polarization data from a metasurface-based Stokes imaging polarimeter and informs their use in polarimetric systems more generally.

     
    more » « less
  2. Abstract

    Metasurfaces offer complete control of optical wavefront at the subwavelength scale, advancing a new class of artificial planar optics, including lenses, waveplates, and holograms, with unprecedented merits over conventional optical components. In particular, the ultrathin, flat, and compact characteristics of metasurfaces facilitate their integration with semiconductor devices for the development of miniaturized and multifunctional optoelectronic systems. In this work, generation of structured light is implemented at an ultracompact wafer‐level through the monolithic integration of metasurface with standard vertical cavity surface‐emitting lasers (VCSELs). This work opens new perspectives for the design of structured light systems with compactness, lightweight, and scalability. Ultracompact beam structured laser chips with versatile functionalities are experimentally demonstrated, including multichannel beams array generation, on‐chip large‐angle beam steering up to 60°, and wafer‐level holographic beam shaping with a wide field of view (about 124°). The results will promote the development of compact light structuring systems with great potential in 3D imaging, displays, robotic vision, human–computer interaction, and augmented/virtual reality.

     
    more » « less
  3. Abstract

    Optical metasurfaces, consisting of subwavelength‐scale meta‐atom arrays, hold great promise of overcoming the fundamental limitations of conventional optics. Due to their structural complexity, metasurfaces usually require high‐resolution yet slow and expensive fabrication processes. Here, using a metasurface polarimetric imaging device as an example, the photonic structures and the Nanoimprint lithography (NIL) processes are designed, creating two separate NIL molds over a patterning area of > 20 mm2with designed Moiré alignment markers by electron‐beam writing, and further subsequently integrate silicon and aluminum metasurface structures on a chip. Uniquely, the silicon and aluminum metasurfaces are fabricated by using the nanolithography and 3D pattern‐transfer capabilities of NIL, respectively, achieving nanometer‐scale linewidth uniformity, sub‐200 nm translational overlay accuracy, and <0.017 rotational alignment error while significantly reducing fabrication complexity and surface roughness. The micro‐sized multilayer metasurfaces have high circular polarization extinction ratios as large as ≈20 and ≈80 in blue and red wavelengths. Further, the metasurface chip‐integrated CMOS imager demonstrates high accuracy in broad‐band, full Stokes parameter analysis in the visible wavelength ranges and single‐shot polarimetric imaging. This novel, NIL‐based, multilayered nanomanufacturing approach is applicable to the scalable production of large‐area functional structures for ultra‐compact optic, electronic, and quantum devices.

     
    more » « less
  4. Abstract Optical metasurfaces with subwavelength thickness hold considerable promise for future advances in fundamental optics and novel optical applications due to their unprecedented ability to control the phase, amplitude, and polarization of transmitted, reflected, and diffracted light. Introducing active functionalities to optical metasurfaces is an essential step to the development of next-generation flat optical components and devices. During the last few years, many attempts have been made to develop tunable optical metasurfaces with dynamic control of optical properties (e.g., amplitude, phase, polarization, spatial/spectral/temporal responses) and early-stage device functions (e.g., beam steering, tunable focusing, tunable color filters/absorber, dynamic hologram, etc) based on a variety of novel active materials and tunable mechanisms. These recently-developed active metasurfaces show significant promise for practical applications, but significant challenges still remain. In this review, a comprehensive overview of recently-reported tunable metasurfaces is provided which focuses on the ten major tunable metasurface mechanisms. For each type of mechanism, the performance metrics on the reported tunable metasurface are outlined, and the capabilities/limitations of each mechanism and its potential for various photonic applications are compared and summarized. This review concludes with discussion of several prospective applications, emerging technologies, and research directions based on the use of tunable optical metasurfaces. We anticipate significant new advances when the tunable mechanisms are further developed in the coming years. 
    more » « less
  5. Abstract

    All‐optical control and detection of magnetic states for high‐density recording necessitate nanophotonic approaches to amplify local light intensity below the diffraction limit. Sculpting the near‐field phase and polarization can additionally strengthen magneto‐optical effects that rely on circularly polarized pulses, such as all‐optical helicity‐dependent switching, imaging, and spin‐wave excitation. Here, high‐refractive‐index dielectric nanoantennas illuminated with circularly polarized light resonantly enhance local electric field rotation by more than sixfold within [Pt/Co]Nthin films. Sub‐wavelength arrays of amorphous Si nanodisks, or metasurfaces, patterned on perpendicularly magnetized films support Mie‐type resonances that modulate reflection and transmission dissymmetry by >±2% in experiments. Spatial and spectral interference between dipolar modes, proximity effects, and gain are evaluated by varying disk aspect ratio, metasurface–metal separation, and magnetic film thickness, respectively. Simulated enhancements in magnetic circular birefringence and differential absorption are correlated with amplified local field rotation at electric dipolar modes. Greater achievable amplifications are shown via simulations with single‐crystalline Si metasurfaces exhibiting lower losses, including a 12‐fold strengthened electric field rotation within ferromagnetic layers. The metasurface design rules established here could enable nanoscale localization of all‐optical magnetic switching with lowered laser fluence thresholds, as well as enhanced magneto‐optical responses for light‐assisted reading in spintronic devices.

     
    more » « less