skip to main content


Title: Microglia morphological response to mesenchymal stromal cell extracellular vesicles demonstrates EV therapeutic potential for modulating neuroinflammation
Abstract Background

Mesenchymal stromal cell derived extracellular vesicles (MSC-EVs) are a promising therapeutic for neuroinflammation. MSC-EVs can interact with microglia, the resident immune cells of the brain, to exert their immunomodulatory effects. In response to inflammatory cues, such as cytokines, microglia undergo phenotypic changes indicative of their function e.g. morphology and secretion. However, these changes in response to MSC-EVs are not well understood. Additionally, no disease-relevant screening tools to assess MSC-EV bioactivity exist, which has further impeded clinical translation. Here, we developed a quantitative, high throughput morphological profiling approach to assess the response of microglia to neuroinflammation- relevant signals and whether this morphological response can be used to indicate the bioactivity of MSC-EVs.

Results

Using an immortalized human microglia cell-line, we observed increased size (perimeter, major axis length) and complexity (form factor) upon stimulation with interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α). Upon treatment with MSC-EVs, the overall morphological score (determined using principal component analysis) shifted towards the unstimulated morphology, indicating that MSC-EVs are bioactive and modulate microglia. The morphological effects of MSC-EVs in TNF-α /IFN-γ stimulated cells were concomitant with reduced secretion of 14 chemokines/cytokines (e.g. CXCL6, CXCL9) and increased secretion of 12 chemokines/cytokines (e.g. CXCL8, CXCL10). Proteomic analysis of cell lysates revealed significant increases in 192 proteins (e.g. HIBADH, MEAK7, LAMC1) and decreases in 257 proteins (e.g. PTEN, TOM1, MFF) with MSC-EV treatment. Of note, many of these proteins are involved in regulation of cell morphology and migration. Gene Set Variation Analysis revealed upregulation of pathways associated with immune response, such as regulation of cytokine production, immune cell infiltration (e.g. T cells, NK cells) and morphological changes (e.g. Semaphorin, RHO/Rac signaling). Additionally, changes in microglia mitochondrial morphology were measured suggesting that MSC-EV modulate mitochondrial metabolism.

Conclusion

This study comprehensively demonstrates the effects of MSC-EVs on human microglial morphology, cytokine secretion, cellular proteome, and mitochondrial content. Our high-throughput, rapid, low-cost morphometric approach enables screening of MSC-EV batches and manufacturing conditions to enhance EV function and mitigate EV functional heterogeneity in a disease relevant manner. This approach is highly generalizable and can be further adapted and refined based on selection of the disease-relevant signal, target cell, and therapeutic product.

 
more » « less
PAR ID:
10549547
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Journal of Biological Engineering
Volume:
18
Issue:
1
ISSN:
1754-1611
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Quantification of cell-secreted molecules, e.g. , cytokines, is fundamental to the characterization of immune responses. Cytokine capture assays that use engineered antibodies to anchor the secreted molecules to the secreting cells are widely used to characterize immune responses because they allow both sensitive identification and recovery of viable responding cells. However, if the cytokines diffuse away from the secreting cells, non-secreting cells will also be identified as responding cells. Here we encapsulate immune cells in microfluidic droplets and perform in-droplet cytokine capture assays to limit the diffusion of the secreted cytokines. We use microfluidic devices to rapidly encapsulate single natural killer NK-92 MI cells and their target K562 cells into microfluidic droplets. We perform in-droplet IFN-γ capture assays and demonstrate that NK-92 MI cells recognize target cells within droplets and become activated to secrete IFN-γ. Droplet encapsulation prevents diffusion of secreted products to neighboring cells and dramatically reduces both false positives and false negatives, relative to assays performed without droplets. In a sample containing 1% true positives, encapsulation reduces, from 94% to 2%, the number of true-positive cells appearing as negatives; in a sample containing 50% true positives, the number of non-stimulated cells appearing as positives is reduced from 98% to 1%. After cells are released from the droplets, secreted cytokine remains captured onto secreting immune cells, enabling FACS-isolation of populations highly enriched for activated effector immune cells. Droplet encapsulation can be used to reduce background and improve detection of any single-cell secretion assay. 
    more » « less
  2. Neuroinflammation is characterized by the elevation of cytokines and adenosine triphosphate (ATP), which in turn activates microglia. These immunoregulatory molecules typically form gradients in vivo, which significantly influence microglial behaviors such as increasing calcium signaling, migration, phagocytosis, and cytokine secretion. Quantifying microglial calcium signaling in the context of inflammation holds the potential for developing precise therapeutic strategies for neurological diseases. However, the current calcium imaging systems are technically challenging to operate, necessitate large volumes of expensive reagents and cells, and model immunoregulatory molecules as uniform concentrations, failing to accurately replicate the in vivo microenvironment. In this study, we introduce a novel calcium monitoring micro-total analysis system (CAM-μTAS) designed to quantify calcium dynamics in microglia (BV2 cells) within defined cytokine gradients. Leveraging programmable pneumatically actuated lifting gate microvalve arrays and a Quake valve, CAM-μTAS delivers cytokine gradients to microglia, mimicking neuroinflammation. Our device automates sample handling and cell culture, enabling rapid media changes in just 1.5 s, thus streamlining the experimental workflow. By analyzing BV2 calcium transient latency to peak, we demonstrate location-dependent microglial activation patterns based on cytokine and ATP gradients, offering insights contrasting those of non-gradient-based perfusion systems. By harnessing advancements in microsystem technology to quantify calcium dynamics, we can construct simplified human models of neurological disorders, unravel the intricate mechanisms of cell-cell signaling, and conduct robust evaluations of novel therapeutics.

     
    more » « less
  3. ABSTRACT

    Introduction:We hypothesized extracellular vesicles (EVs) from preconditioned human-induced pluripotent stem cell–derived mesenchymal stem cells (iMSCs) attenuate LPS-induced acute lung injury (ALI) and endotoxemia.Methods:iMSCs were incubated with cell stimulation cocktail (CSC) and EVs were isolated. iMSC-EVs were characterized by size and EV markers. Biodistribution of intratracheal (IT), intravenous, and intraperitoneal injection of iMSC-EVs in mice was examined using IVIS. Uptake of iMSC-EVs in lung tissue, alveolar macrophages, and RAW264.7 cells was also assessed. C57BL/6 mice were treated with IT/IP iMSC-EVs or vehicle ± IT/IP LPS to induce ALI/acute respiratory distress syndrome and endotoxemia. Lung tissues, plasma, and bronchoalveolar lavage fluid (BALF) were harvested at 24 h. Lung histology, BALF neutrophil/macrophage, cytokine levels, and total protein concentration were measured to assess ALI and inflammation. Survival studies were performed using IP LPS in mice for 3 days.Results:iMSC-EV route of administration resulted in differential tissue distribution. iMSC-EVs were taken up by alveolar macrophages in mouse lung and cultured RAW264.7 cells. IT LPS-treated mice demonstrated marked histologic ALI, increased BALF neutrophils/macrophages and protein, and increased BALF and plasma TNF-α/IL-6 levels. These parameters were attenuated by 2 h before or 2 h after treatment with IT iMSC-EVs in ALI mice. Interestingly, the IT LPS-induced increase in IL-10 was augmented by iMSC-EVs. Mice treated with IP LPS showed increases in TNF-α and IL-6 that were downregulated by iMSC-EVs and LPS-induced mortality was ameliorated by iMSC-EVs. Administration of IT iMSC-EVs 2 h after LPS downregulated the increase in proinflammatory cytokines (TNF-α/IL-6) by LPS and further increased IL-10 levels.Conclusions:iMSC-EVs attenuate the inflammatory effects of LPS on cytokine levels in ALI and IP LPS in mice. LPS-induced mortality was improved with administration of iMSC-EVs.

     
    more » « less
  4. Abstract Background

    Alzheimer’s disease (AD) is a progressive neurodegenerative disease that impacts nearly 400 million people worldwide. The accumulation of amyloid beta (Aβ) in the brain has historically been associated with AD, and recent evidence suggests that neuroinflammation plays a central role in its origin and progression. These observations have given rise to the theory that Aβ is the primary trigger of AD, and induces proinflammatory activation of immune brain cells (i.e., microglia), which culminates in neuronal damage and cognitive decline. To test this hypothesis, many in vitro systems have been established to study Aβ-mediated activation of innate immune cells. Nevertheless, the transcriptional resemblance of these models to the microglia in the AD brain has never been comprehensively studied on a genome-wide scale.

    Methods

    We used bulk RNA-seq to assess the transcriptional differences between in vitro cell types used to model neuroinflammation in AD, including several established, primary and iPSC-derived immune cell lines (macrophages, microglia and astrocytes) and their similarities to primary cells in the AD brain. We then analyzed the transcriptional response of these innate immune cells to synthetic Aβ or LPS and INFγ.

    Results

    We found that human induced pluripotent stem cell (hIPSC)-derived microglia (IMGL) are the in vitro cell model that best resembles primary microglia. Surprisingly, synthetic Aβ does not trigger a robust transcriptional response in any of the cellular models analyzed, despite testing a wide variety of Aβ formulations, concentrations, and treatment conditions. Finally, we found that bacterial LPS and INFγ activate microglia and induce transcriptional changes that resemble many, but not all, aspects of the transcriptomic profiles of disease associated microglia (DAM) present in the AD brain.

    Conclusions

    These results suggest that synthetic Aβ treatment of innate immune cell cultures does not recapitulate transcriptional profiles observed in microglia from AD brains. In contrast, treating IMGL with LPS and INFγ induces transcriptional changes similar to those observed in microglia detected in AD brains.

     
    more » « less
  5. Background

    Microglia play a critical role in neurodegenerative disorders, such as Alzheimer's disease, where alterations in microglial function may result in pathogenic amyloid-β (Aβ) accumulation, chronic neuroinflammation, and deleterious effects on neuronal function. However, studying these complex factors in vivo, where numerous confounding processes exist, is challenging, and until recently, in vitro models have not allowed sustained culture of critical cell types in the same culture.

    Objective

    We employed a rat primary tri-culture (neurons, astrocytes, and microglia) model and compared it to co-culture (neurons and astrocytes) and mono-culture (microglia) to study microglial function (i.e., motility and Aβ clearance) and proteomic response to exogenous Aβ.

    Methods

    The cultures were exposed to fluorescently-labeled Aβ (FITC-Aβ) particles for varying durations. Epifluorescence microscopy images were analyzed to quantify the number of FITC-Aβ particles and assess cytomorphological features. Cytokine profiles from conditioned media were obtained. Live-cell imaging was employed to extract microglia motility parameters.

    Results

    FITC-Aβ particles were more effectively cleared in the tri-culture compared to the co-culture. This was attributed to microglia engulfing FITC-Aβ particles, as confirmed via epifluorescence and confocal microscopy. FITC-Aβ treatment significantly increased microglia size, but had no significant effect on neuronal surface coverage or astrocyte size. Upon FITC-Aβ treatment, there was a significant increase in proinflammatory cytokines in tri-culture, but not in co-culture. Aβ treatment altered microglia motility evident as a swarming-like motion.

    Conclusions

    The results suggest that neuron-astrocyte-microglia interactions influence microglia function and highlight the utility of the tri-culture model for studies of neuroinflammation, neurodegeneration, and cell-cell communication.

     
    more » « less