skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An AI-Based Workflow for Fast Registration of UAV-Produced 3D Point Clouds
The integration of structure from motion (SFM) and unmanned aerial vehicle (UAV) technologies has allowed for the generation of very high-resolution three-dimensional (3D) point cloud data (up to millimeters) to detect and monitor surface changes. However, a bottleneck still exists in accurately and rapidly registering the point clouds at different times. The existing point cloud registration algorithms, such as the Iterative Closest Point (ICP) and the Fast Global Registration (FGR) method, were mainly developed for the registration of small and static point cloud data, and do not perform well when dealing with large point cloud data with potential changes over time. In particular, registering large data is computationally expensive, and the inclusion of changing objects reduces the accuracy of the registration. In this paper, we develop an AI-based workflow to ensure high-quality registration of the point clouds generated using UAV-collected photos. We first detect stable objects from the ortho-photo produced by the same set of UAV-collected photos to segment the point clouds of these objects. Registration is then performed only on the partial data with these stable objects. The application of this workflow using the UAV data collected from three erosion plots at the East Tennessee Research and Education Center indicates that our workflow outperforms the existing algorithms in both computational speed and accuracy. This AI-based workflow significantly improves computational efficiency and avoids the impact of changing objects for the registration of large point cloud data.  more » « less
Award ID(s):
2050534
PAR ID:
10549749
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Remote Sensing
Volume:
15
Issue:
21
ISSN:
2072-4292
Page Range / eLocation ID:
5163
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. 3D representations of geographical surfaces in the form of dense point clouds can be a valuable tool for documenting and reconstructing a structural collapse, such as the 2021 Champlain Towers Condominium collapse in Surfside, Florida. Point cloud data reconstructed from aerial footage taken by uncrewed aerial systems at frequent intervals from a dynamic search and rescue scene poses significant challenges. Properly aligning large point clouds in this context, or registering them, poses noteworthy issues as they capture multiple regions whose geometries change over time. These regions denote dynamic features such as excavation machinery, cones marking boundaries and the structural collapse rubble itself. In this paper, the performances of commonly used point cloud registration methods for dynamic scenes present in the raw data are studied. The use of Iterative Closest Point (ICP), Rigid - Coherent Point Drift (CPD) and PointNetLK for registering dense point clouds, reconstructed sequentially over a time- frame of five days, is studied and evaluated. All methods are compared by error in performance, execution time, and robustness with a concluding analysis and a judgement of the preeminent method for the specific data at hand is provided. 
    more » « less
  2. 3D LiDAR scanners are playing an increasingly important role in autonomous driving as they can generate depth information of the environment. However, creating large 3D LiDAR point cloud datasets with point-level labels requires a significant amount of manual annotation. This jeopardizes the efficient development of supervised deep learning algorithms which are often data-hungry. We present a framework to rapidly create point clouds with accurate pointlevel labels from a computer game. To our best knowledge, this is the first publication on LiDAR point cloud simulation framework for autonomous driving. The framework supports data collection from both auto-driving scenes and user-configured scenes. Point clouds from auto-driving scenes can be used as training data for deep learning algorithms, while point clouds from user-configured scenes can be used to systematically test the vulnerability of a neural network, and use the falsifying examples to make the neural network more robust through retraining. In addition, the scene images can be captured simultaneously in order for sensor fusion tasks, with a method proposed to do automatic registration between the point clouds and captured scene images. We show a significant improvement in accuracy (+9%) in point cloud segmentation by augmenting the training dataset with the generated synthesized data. Our experiments also show by testing and retraining the network using point clouds from user-configured scenes, the weakness/blind spots of the neural network can be fixed. 
    more » « less
  3. Abstract Point cloud registration is an important task in fields like robotics, computer graphics, and medical imaging, involving the determination of spatial relationships between point sets in 3D space. Real-world challenges, such as non-rigid movements and partial visibility, including occlusions and sensor noise, make non-rigid registration particularly difficult. Traditional methods are often computationally intensive, exhibit unstable performance, and lack strong theoretical guarantees. Recently, the optimal transport problem, including its unbalanced variations like the optimal partial transport problem, has emerged as a powerful tool for point-cloud registration. These methods treat point clouds as empirical measures and provide a mathematically rigorous framework to quantify the correspondence between transformed source and target points. In this paper, we address the non-rigid registration problem using optimal transport theory and introduce a set of non-rigid registration methods based on the optimal partial transportation problem. Additionally, by leveraging efficient solutions to the one-dimensional optimal partial transport problem and extending them via slicing, we achieve significant computational efficiency, resulting in fast and robust registration algorithms. We validate our methods by comparing baselines on various 3D and 2D non-rigid registration problems with noisy point clouds. 
    more » « less
  4. Abstract. Point density is an important property that dictates the usability of a point cloud data set. This paper introduces an efficient, scalable, parallel algorithm for computing the local point density index, a sophisticated point cloud density metric. Computing the local point density index is non-trivial, because this computation involves a neighbour search that is required for each, individual point in the potentially large, input point cloud. Most existing algorithms and software are incapable of computing point density at scale. Therefore, the algorithm introduced in this paper aims to address both the needed computational efficiency and scalability for considering this factor in large, modern point clouds such as those collected in national or regional scans. The proposed algorithm is composed of two stages. In stage 1, a point-level, parallel processing step is performed to partition an unstructured input point cloud into partially overlapping, buffered tiles. A buffer is provided around each tile so that the data partitioning does not introduce spatial discontinuity into the final results. In stage 2, the buffered tiles are distributed to different processors for computing the local point density index in parallel. That tile-level parallel processing step is performed using a conventional algorithm with an R-tree data structure. While straight-forward, the proposed algorithm is efficient and particularly suitable for processing large point clouds. Experiments conducted using a 1.4 billion point data set acquired over part of Dublin, Ireland demonstrated an efficiency factor of up to 14.8/16. More specifically, the computational time was reduced by 14.8 times when the number of processes (i.e. executors) increased by 16 times. Computing the local point density index for the 1.4 billion point data set took just over 5 minutes with 16 executors and 8 cores per executor. The reduction in computational time was nearly 70 times compared to the 6 hours required without parallelism. 
    more » « less
  5. Ishikawa, H.; Liu, CL.; Pajdla, T.; Shi, J. (Ed.)
    We propose a novel technique to register sparse 3D scans in the absence of texture. While existing methods such as KinectFusion or Iterative Closest Points (ICP) heavily rely on dense point clouds, this task is particularly challenging under sparse conditions without RGB data. Sparse texture-less data does not come with high-quality boundary signal, and this prohibits the use of correspondences from corners, junctions, or boundary lines. Moreover, in the case of sparse data, it is incorrect to assume that the same point will be captured in two consecutive scans. We take a different approach and first re-parameterize the point-cloud using a large number of line segments. In this re-parameterized data, there exists a large number of line intersection (and not correspondence) constraints that allow us to solve the registration task. We propose the use of a two-step alternating projection algorithm by formulating the registration as the simultaneous satisfaction of intersection and rigidity constraints. The proposed approach outperforms other top-scoring algorithms on both Kinect and LiDAR datasets. In Kinect, we can use 100X downsampled sparse data and still outperform competing methods operating on full-resolution data. 
    more » « less