Polyurethane (PU) elastomers are among the most used rubberlike materials due to their combined merits, including high abrasion resistance, excellent mechanical properties, biocompatibility, and good processing performance. A PU elastomer exhibits pronounced hysteresis, leading to a high toughness on the order of 104 J/m2. However, toughness gained from hysteresis is ineffective to resist crack growth under cyclic load, causing a fatigue threshold below 100 J/m2. Here we report a fatigue-resistant PU fiber–matrix composite, using commercially available Spandex as the fibers and PU elastomer as the matrix. The Spandex fibers are stiff, strong, and stretchable. The matrix is soft, tough, and stretchable. We describe a pullout test to measure the adhesion toughness between the fiber and matrix. The test is highly reproducible, showing an adhesion toughness of 3170 J/m2. The composite shows a maximum stretchability of 6.0, a toughness of 16.7 kJ/m2, and a fatigue threshold of 3900 J/m2. When a composite with a precut crack is stretched, the soft matrix causes the crack tip to blunt greatly, which distributes high stress over a long segment of the Spandex fiber ahead the crack tip. This deconcentration of stress makes the composite resist the growth of cracks under monotonic and cyclic loads. The PU elastomer composites open doors for realistic applications of fatigue-resistant elastomers
more »
« less
Fatigue‐Resistant Mechanoresponsive Color‐Changing Hydrogels for Vision‐Based Tactile Robots
Abstract Mechanoresponsive color‐changing materials that can reversibly and resiliently change color in response to mechanical deformation are highly desirable for diverse modern technologies in optics, sensors, and robots; however, such materials are rarely achieved. Here, a fatigue‐resistant mechanoresponsive color‐changing hydrogel (FMCH) is reported that exhibits reversible, resilient, and predictable color changes under mechanical stress. At its undeformed state, the FMCH remains dark under a circular polariscope; upon uniaxial stretching of up to six times its initial length, it gradually shifts its color from black, to gray, yellow, and purple. Unlike traditional mechanoresponsive color‐changing materials, FMCH maintains its performance across various strain rates for up to 10 000 cycles. Moreover, FMCH demonstrates superior mechanical properties with fracture toughness of 3000 J m−2, stretchability of 6, and fatigue threshold up to 400 J m−2. These exceptional mechanical and optical features are attributed to FMCH's substantial molecular entanglements and desirable hygroscopic salts, which synergistically enhance its mechanical toughness while preserving its color‐changing performance. One application of this FMCH as a tactile sensoris then demonstrated for vision‐based tactile robots, enabling them to discern material stiffness, object shape, spatial location, and applied pressure by translating stress distribution on the contact surface into discernible images.
more »
« less
- PAR ID:
- 10549757
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Materials
- ISSN:
- 0935-9648
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract While in-situ underwater adhesives are highly desirable for marine exploration and underwater robotics, existing underwater adhesives suffer from significantly reduced performance compared to air-cured adhesives, mainly due to difficulties in removing interfacial water molecules. Here, we develop a pressure-sensitive in-situ underwater adhesive featuring superabsorbent particles infused with functional silane and hydrogel precursors. When injected into an underwater crack, the particles quickly absorb water, swell, and fill the crack. Mechanical pressure is applied to improve particle-particle and particle-substrate interactions, while heat is utilized to trigger thermal polymerization of the hydrogel precursors. This process creates porous adhesives via bulk polymerization and forms covalent bonding with the substrate via surface silanization. Our experiments demonstrate that mechanical pressure significantly enhances the adhesive’s stretchability (from 3 to 5), stiffness (from 37 kPa to 78 kPa), fracture toughness (from 1 kJ/m2to 7 kJ/m2), and interfacial toughness with glass substrates (from 45 J/m2to 270 J/m2).more » « less
-
Rubbers reinforced with rigid particles are used in high-volume applications, including tyres, dampers, belts and hoses1. Many applications require high modulus to resist excessive deformation and high fatigue threshold to resist crack growth under cyclic load. The particles are known to greatly increase modulus but not fatigue threshold. For example, adding carbon particles to natural rubber increases its modulus by one to two orders of magnitude1,2,3, but its fatigue threshold, reinforced or not, has remained approximately 100 J m−2 for decades4,5,6,7. Here we amplify the fatigue threshold of particle-reinforced rubbers by multiscale stress deconcentration. We synthesize a rubber in which highly entangled long polymers strongly adhere with rigid particles. At a crack tip, stress deconcentrates across two length scales: first through polymers and then through particles. This rubber achieves a fatigue threshold of approximately 1,000 J m−2. Mounts and grippers made of this rubber bear high loads and resist crack growth over repeated operation. Multiscale stress deconcentration expands the space of materials properties, opening doors to curtailing polymer pollution and building high-performance soft machines.more » « less
-
Load-bearing soft tissues normally show J-shaped stress–strain behaviors with high compliance at low strains yet high strength at high strains. They have high water content but are still tough and durable. By contrast, naturally derived hydrogels are weak and brittle. Although hydrogels prepared from synthetic polymers can be strong and tough, they do not have the desired bioactivity for emerging biomedical applications. Here, we present a thermomechanical approach to replicate the combinational properties of soft tissues in protein-based photocrosslinkable hydrogels. As a demonstration, we create a gelatin methacryloyl fiber hydrogel with soft tissue-like mechanical properties, such as low Young’s modulus (0.1 to 0.3 MPa), high strength (1.1 ± 0.2 MPa), high toughness (9,100 ± 2,200 J/m 3 ), and high fatigue resistance (2,300 ± 500 J/m 2 ). This hydrogel also resembles the biochemical and architectural properties of native extracellular matrix, which enables a fast formation of 3D interconnected cell meshwork inside hydrogels. The fiber architecture also regulates cellular mechanoresponse and supports cell remodeling inside hydrogels. The integration of tissue-like mechanical properties and bioactivity is highly desirable for the next-generation biomaterials and could advance emerging fields such as tissue engineering and regenerative medicine.more » « less
-
The emerging applications of hydrogels in devices and machines require hydrogels to maintain robustness under cyclic mechanical loads. Whereas hydrogels have been made tough to resist fracture under a single cycle of mechanical load, these toughened gels still suffer from fatigue fracture under multiple cycles of loads. The reported fatigue threshold for synthetic hydrogels is on the order of 1 to 100 J/m 2 . We propose that designing anti-fatigue-fracture hydrogels requires making the fatigue crack encounter and fracture objects with energies per unit area much higher than that for fracturing a single layer of polymer chains. We demonstrate that the controlled introduction of crystallinity in hydrogels can substantially enhance their anti-fatigue-fracture properties. The fatigue threshold of polyvinyl alcohol (PVA) with a crystallinity of 18.9 weight % in the swollen state can exceed 1000 J/m 2 .more » « less
An official website of the United States government
