skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bare parts in the Galliformes: the evolution of a multifunctional structure
A morphological trait can have multiple functions shaped by varying selective forces. Bare parts in birds, such as wattles, casques and combs, are known to function in both signalling and thermoregulation. Studies have demonstrated such structures are targets of sexual selection via female choice in several species of Galliformes (junglefowl, turkeys and grouse), though other studies have shown some role in thermoregulation (guineafowl). Here, we tested fundamental hypotheses regarding the evolution and maintenance of bare parts in Galliformes. Using a phylogeny that included nearly 90% of species in the order, we evaluated the role of both sexual and natural selection in shaping the function of bare parts across different clades. We found a combination of both environmental and putative sexually selected traits strongly predicted the variation of bare parts for both males and females across Galliformes. When the analysis is restricted to the largest family, Phasianidae (pheasants, junglefowl and allies), sexually selected traits were the primary predictors of bare parts. Our results suggest that bare parts are important for both thermoregulation and sexual signalling across Galliformes but are primarily under strong sexual selection within the Phasianidae.  more » « less
Award ID(s):
1655683
PAR ID:
10549783
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Royal Society Publishing
Date Published:
Journal Name:
Royal Society Open Science
Volume:
11
Issue:
1
ISSN:
2054-5703
Page Range / eLocation ID:
231695
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Synopsis Sexual selection drives the evolution of a broad diversity of traits, such as the enlarged claws of fiddler crabs, the high-energy behavioral displays of hummingbirds, the bright red plumage of house finches, the elaborated antennae of moths, the wing “snapping” displays of manakins and the calculated calls of túngara frogs. A majority of work in sexual selection has aimed to measure the magnitude of these traits. Yet, we know surprisingly little about the physiology shaping such a diversity of sexually selected behavior and supportive morphology. The energetic properties underlying sexual signals are ultimately fueled by metabolic machinery at multiple scales, from mitochondrial properties and enzymatic activity to hormonal regulation and the modification of muscular and neural tissues. However, different organisms have different physiological constraints and face various ecological selection pressures; thus, selection operates and interacts at multiple scales to shape sexually selected traits and behavior. In this perspective piece, we describe illustrative case studies in different organisms to emphasize that understanding the physiological and energetic mechanisms that shape sexual traits may be critical to understanding their evolution and ramifications with ecological selection. We discuss (1) the way sexual selection shapes multiple integrated components of physiology, behavior, and morphology, (2) the way that sexually selected carotenoid pigments may reflect some aspects of cellular processes, (3) the relationship between sexually selected modalities and energetics, (4) the hormone ecdysone and its role in shaping sex-specific phenotypes in insects, (5) the way varied interaction patterns and social contexts select for signaling strategies that are responsive to social scenes, and (6) the role that sexual selection may have in the exploitation of novel thermal niches. Our major objective is to describe how sexually selected behavior, physiology, and ecology are shaped in diverse organisms so that we may develop a deeper and more integrated understanding of sexual trait evolution and its ecological consequences. 
    more » « less
  2. null (Ed.)
    Abstract Understanding diversity has been a pursuit in evolutionary biology since its inception. A challenge arises when sexual selection has played a role in diversification. Questions of what constitutes a ‘species’, homoplasy vs. synapomorphy, and whether sexually selected traits show phylogenetic signal have hampered work on many systems. Peacock spiders are famous for sexually selected male courtship dances and peacock-like abdominal ornamentation. This lineage of jumping spiders currently includes over 90 species classified into two genera, Maratus and Saratus. Most Maratus species have been placed into groups based on secondary sexual characters, but evolutionary relationships remain unresolved. Here we assess relationships in peacock spiders using phylogenomic data (ultraconserved elements and RAD-sequencing). Analyses reveal that Maratus and the related genus Saitis are paraphyletic. Many, but not all, morphological groups within a ‘core Maratus’ clade are recovered as genetic clades but we find evidence for undocumented speciation. Based on original observations of male courtship, our comparative analyses suggest that courtship behaviour and peacock-like abdominal ornamentation have evolved sequentially, with some traits inherited from ancestors and others evolving repeatedly and independently from ‘simple’ forms. Our results have important implications for the taxonomy of these spiders, and provide a much-needed evolutionary framework for comparative studies of the evolution of sexual signal characters. 
    more » « less
  3. Patricelli, Gail L. (Ed.)
    Predation plays a role in preventing the evolution of ever more complicated sexual displays, because such displays often increase an individual’s predation risk. Sexual selection theory, however, omits a key feature of predation in modeling costs to sexually selected traits: Predation is density dependent. As a result of this density dependence, predator–prey dynamics should feed back into the evolution of sexual displays, which, in turn, feeds back into predator–prey dynamics. Here, we develop both population and quantitative genetic models of sexual selection that explicitly link the evolution of sexual displays with predator–prey dynamics. Our primary result is that predation can drive eco-evolutionary cycles in sexually selected traits. We also show that mechanistically modeling the cost to sexual displays as predation leads to novel outcomes such as the maintenance of polymorphism in sexual displays and alters ecological dynamics by muting prey cycles. These results suggest predation as a potential mechanism to maintain variation in sexual displays and underscore that short-term studies of sexual display evolution may not accurately predict long-run dynamics. Further, they demonstrate that a common verbal model (that predation limits sexual displays) with widespread empirical support can result in unappreciated, complex dynamics due to the density-dependent nature of predation. 
    more » « less
  4. Abstract In live-bearing animal lineages, the evolution of the placenta is predicted to create an arena for genomic conflict during pregnancy, drive patterns of male sexual selection, and increase the rate of speciation. Here we test these predictions of the viviparity driven conflict hypothesis (VDCH) in live-bearing poecilid fishes, a group showing multiple independent origins of placentation and extreme variation in male sexually selected traits. As predicted, male sexually selected traits are only gained in lineages that lack placentas; while there is little or no influence of male traits on the evolution of placentas. Both results are consistent with the mode of female provisioning governing the evolution of male attributes. Moreover, it is the presence of male sexually selected traits (pre-copulatory), rather than placentation (post-copulatory), that are associated with higher rates of speciation. These results highlight a causal interaction between female reproductive mode, male sexual selection and the rate of speciation, suggesting a role for conflict in shaping diverse aspects of organismal biology. 
    more » « less
  5. Despite the well-known effects of sexual selection on phenotypes, links between this evolutionary process and reproductive isolation, genomic divergence, and speciation have been difficult to establish. We unravel the genetic basis of sexually selected plumage traits to investigate their effects on reproductive isolation in barn swallows. The genetic architecture of sexual traits is characterized by 12 loci on two autosomes and the Z chromosome. Sexual trait loci exhibit signatures of divergent selection in geographic isolation and barriers to gene flow in secondary contact. Linkage disequilibrium between these genes has been maintained by selection in hybrid zones beyond what would be expected under admixture alone. Our findings reveal that selection on coupled sexual trait loci promotes reproductive isolation, providing key empirical evidence for the role of sexual selection in speciation. 
    more » « less