We consider estimating average treatment effects (ATE) of a binary treatment in observational data when data‐driven variable selection is needed to select relevant covariates from a moderately large number of available covariates . To leverage covariates among predictive of the outcome for efficiency gain while using regularization to fit a parametric propensity score (PS) model, we consider a dimension reduction of based on fitting both working PS and outcome models using adaptive LASSO. A novel PS estimator, the Double‐index Propensity Score (DiPS), is proposed, in which the treatment status is smoothed over the linear predictors for from both the initial working models. The ATE is estimated by using the DiPS in a normalized inverse probability weighting estimator, which is found to maintain double robustness and also local semiparametric efficiency with a fixed number of covariates
In many experimental and observational studies, the outcome of interest is often difficult or expensive to observe, reducing effective sample sizes for estimating average treatment effects (ATEs) even when identifiable. We study how incorporating data on units for which only surrogate outcomes not of primary interest are observed can increase the precision of ATE estimation. We refrain from imposing stringent surrogacy conditions, which permit surrogates as perfect replacements for the target outcome. Instead, we supplement the available, albeit limited, observations of the target outcome with abundant observations of surrogate outcomes, without any assumptions beyond unconfounded treatment assignment and missingness and corresponding overlap conditions. To quantify the potential gains, we derive the difference in efficiency bounds on ATE estimation with and without surrogates, both when an overwhelming or comparable number of units have missing outcomes. We develop robust ATE estimation and inference methods that realize these efficiency gains. We empirically demonstrate the gains by studying long-term-earning effects of job training.
more » « less- PAR ID:
- 10549916
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Journal of the Royal Statistical Society Series B: Statistical Methodology
- ISSN:
- 1369-7412
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract p . Under misspecification of working models, the smoothing step leads to gains in efficiency and robustness over traditional doubly robust estimators. These results are extended to the case wherep diverges with sample size and working models are sparse. Simulations show the benefits of the approach in finite samples. We illustrate the method by estimating the ATE of statins on colorectal cancer risk in an electronic medical record study and the effect of smoking on C‐reactive protein in the Framingham Offspring Study. -
Summary Comparative effectiveness research often involves evaluating the differences in the risks of an event of interest between two or more treatments using observational data. Often, the post‐treatment outcome of interest is whether the event happens within a pre‐specified time window, which leads to a binary outcome. One source of bias for estimating the causal treatment effect is the presence of confounders, which are usually controlled using propensity score‐based methods. An additional source of bias is right‐censoring, which occurs when the information on the outcome of interest is not completely available due to dropout, study termination, or treatment switch before the event of interest. We propose an inverse probability weighted regression‐based estimator that can simultaneously handle both confounding and right‐censoring, calling the method CIPWR, with the letter C highlighting the censoring component. CIPWR estimates the average treatment effects by averaging the predicted outcomes obtained from a logistic regression model that is fitted using a weighted score function. The CIPWR estimator has a double robustness property such that estimation consistency can be achieved when either the model for the outcome or the models for both treatment and censoring are correctly specified. We establish the asymptotic properties of the CIPWR estimator for conducting inference, and compare its finite sample performance with that of several alternatives through simulation studies. The methods under comparison are applied to a cohort of prostate cancer patients from an insurance claims database for comparing the adverse effects of four candidate drugs for advanced stage prostate cancer.
-
Abstract Valid surrogate endpoints S can be used as a substitute for a true outcome of interest T to measure treatment efficacy in a clinical trial. We propose a causal inference approach to validate a surrogate by incorporating longitudinal measurements of the true outcomes using a mixed modeling approach, and we define models and quantities for validation that may vary across the study period using principal surrogacy criteria. We consider a surrogate-dependent treatment efficacy curve that allows us to validate the surrogate at different time points. We extend these methods to accommodate a delayed-start treatment design where all patients eventually receive the treatment. Not all parameters are identified in the general setting. We apply a Bayesian approach for estimation and inference, utilizing more informative prior distributions for selected parameters. We consider the sensitivity of these prior assumptions as well as assumptions of independence among certain counterfactual quantities conditional on pretreatment covariates to improve identifiability. We examine the frequentist properties (bias of point and variance estimates, credible interval coverage) of a Bayesian imputation method. Our work is motivated by a clinical trial of a gene therapy where the functional outcomes are measured repeatedly throughout the trial.
-
Summary The paper considers estimating a parameter β that defines an estimating function U(y, x, β) for an outcome variable y and its covariate x when the outcome is missing in some of the observations. We assume that, in addition to the outcome and the covariate, a surrogate outcome is available in every observation. The efficiency of existing estimators for β depends critically on correctly specifying the conditional expectation of U given the surrogate and the covariate. When the conditional expectation is not correctly specified, which is the most likely scenario in practice, the efficiency of estimation can be severely compromised even if the propensity function (of missingness) is correctly specified. We propose an estimator that is robust against the choice of the conditional expectation via an empirical likelihood. We demonstrate that the estimator proposed achieves a gain in efficiency whether the conditional score is correctly specified or not. When the conditional score is correctly specified, the estimator reaches the semiparametric variance bound within the class of estimating functions that are generated by U. The practical performance of the estimator is evaluated by using simulation and a data set that is based on the 1996 US presidential election.
-
ABSTRACT We propose a communication‐efficient algorithm to estimate the average treatment effect (ATE), when the data are distributed across multiple sites and the number of covariates is possibly much larger than the sample size in each site. Our main idea is to calibrate the estimates of the propensity score and outcome models using some proper surrogate loss functions to approximately attain the desired covariate balancing property. We show that under possible model misspecification, our distributed covariate balancing propensity score estimator (disthdCBPS) can approximate the global estimator, obtained by pooling together the data from multiple sites, at a fast rate. Thus, our estimator remains consistent and asymptotically normal. In addition, when both the propensity score and the outcome models are correctly specified, the proposed estimator attains the semi‐parametric efficiency bound. We illustrate the empirical performance of the proposed method in both simulation and empirical studies.