skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 8, 2025

Title: Steering No-Regret Learners to a Desired Equilibrium
A mediator observes no-regret learners playing an extensive-form game repeatedly across T rounds. The mediator attempts to steer players toward some desirable predetermined equilibrium by giving (nonnegative) payments to players. We call this the steering problem. The steering problem captures problems several problems of interest, among them equilibrium selection and information design (persuasion). If the mediator’s budget is unbounded, steering is trivial because the mediator can simply pay the players to play desirable actions. We study two bounds on the mediator’s payments: a total budget and a per-round budget. If the mediator’s total budget does not grow with T, we show that steering is impossible. However, we show that it is enough for the total budget to grow sublinearly with T, that is, for the average payment to vanish. When players’ full strategies are observed at each round, we show that constant per-round budgets permit steering. In the more challenging setting where only trajectories through the game tree are observable, we show that steering is impossible with constant per-round budgets in general extensive-form games, but possible in normal-form games or if the per-round budget may itself depend on T. We also show how our results can be generalized to the case when the equilibrium is being computed online while steering is happening. We supplement our theoretical positive results with experiments highlighting the efficacy of steering in large games.  more » « less
Award ID(s):
1901403
PAR ID:
10549961
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
EC24
Date Published:
Format(s):
Medium: X
Location:
New Haven, CT
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The existence of simple uncoupled no-regret learning dynamics that converge to correlated equilibria in normal-form games is a celebrated result in the theory of multi-agent systems. Specifically, it has been known for more than 20 years that when all players seek to minimize their internal regret in a repeated normal-form game, the empirical frequency of play converges to a normal-form correlated equilibrium. Extensive-form games generalize normal-form games by modeling both sequential and simultaneous moves, as well as imperfect information. Because of the sequential nature and presence of private information in the game, correlation in extensive-form games possesses significantly different properties than its counterpart in normal-form games, many of which are still open research directions. Extensive-form correlated equilibrium (EFCE) has been proposed as the natural extensive-form counterpart to the classical notion of correlated equilibrium in normal-form games. Compared to the latter, the constraints that define the set of EFCEs are significantly more complex, as the correlation device must keep into account the evolution of beliefs of each player as they make observations throughout the game. Due to that significant added complexity, the existence of uncoupled learning dynamics leading to an EFCE has remained a challenging open research question for a long time. In this article, we settle that question by giving the first uncoupled no-regret dynamics that converge to the set of EFCEs in n-player general-sum extensive-form games with perfect recall. We show that each iterate can be computed in time polynomial in the size of the game tree, and that, when all players play repeatedly according to our learning dynamics, the empirical frequency of play is proven to be a O(T^-0.5)-approximate EFCE with high probability after T game repetitions, and an EFCE almost surely in the limit. 
    more » « less
  2. Characterizing the performance of no-regret dynamics in multi-player games is a foundational problem at the interface of online learning and game theory. Recent results have revealed that when all players adopt specific learning algorithms, it is possible to improve exponentially over what is predicted by the overly pessimistic no-regret framework in the traditional adversarial regime, thereby leading to faster convergence to the set of coarse correlated equilibria (CCE) – a standard game-theoretic equilibrium concept. Yet, despite considerable recent progress, the fundamental complexity barriers for learning in normal- and extensive-form games are poorly understood. In this paper, we make a step towards closing this gap by first showing that – barring major complexity breakthroughs – any polynomial-time learning algorithms in extensive-form games need at least 2log1/2−o(1) |T | iterations for the average regret to reach below even an absolute constant, where |T | is the number of nodes in the game. This establishes a superpolynomial separation between no-regret learning in normal- and extensive-form games, as in the former class a logarithmic number of iterations suffices to achieve constant average regret. Furthermore, our results imply that algorithms such as multiplicative weights update, as well as its optimistic counterpart, require at least 2(log logm)1/2−o(1) iterations to attain an O(1)-CCE in m-action normal-form games under any parameterization. These are the first non-trivial – and dimension-dependent – lower bounds in that setting for the most well-studied algorithms in the literature. From a technical standpoint, we follow a beautiful connection recently made by Foster, Golowich, and Kakade (ICML ’23) between sparse CCE and Nash equilibria in the context of Markov games. Consequently, our lower bounds rule out polynomial-time algorithms well beyond the traditional online learning framework, capturing techniques commonly used for accelerating centralized equilibrium computation. 
    more » « less
  3. We consider computational games, sequences of games G = (G1,G2,...) where, for all n, Gn has the same set of players. Computational games arise in electronic money systems such as Bitcoin, in cryptographic protocols, and in the study of generative adversarial networks in machine learning. Assuming that one-way functions exist, we prove that there is 2-player zero-sum computational game G such that, for all n, the size of the action space in Gn is polynomial in n and the utility function in Gn is computable in time polynomial in n, and yet there is no ε-Nash equilibrium if players are restricted to using strategies computable by polynomial-time Turing machines, where we use a notion of Nash equilibrium that is tailored to computational games. We also show that an ε-Nash equilibrium may not exist if players are constrained to perform at most T computational steps in each of the games in the sequence. On the other hand, we show that if players can use arbitrary Turing machines to compute their strategies, then every computational game has an ε-Nash equilibrium. These results may shed light on competitive settings where the availability of more running time or faster algorithms can lead to a “computational arms race”, precluding the existence of equilibrium. They also point to inherent limitations of concepts such as “best response” and Nash equilibrium in games with resource-bounded players. 
    more » « less
  4. null (Ed.)
    Unlike normal-form games, where correlated equilibria have been studied for more than 45 years, extensive-form correlation is still generally not well understood. Part of the reason for this gap is that the sequential nature of extensive-form games allows for a richness of behaviors and incentives that are not possible in normal-form settings. This richness translates to a significantly different complexity landscape surrounding extensive-form correlated equilibria. As of today, it is known that finding an optimal extensive-form correlated equilibrium (EFCE), extensive-form coarse correlated equilibrium (EFCCE), or normal-form coarse correlated equilibrium (NFCCE) in a two-player extensive-form game is computationally tractable when the game does not include chance moves, and intractable when the game involves chance moves. In this paper we significantly refine this complexity threshold by showing that, in two-player games, an optimal correlated equilibrium can be computed in polynomial time, provided that a certain condition is satisfied. We show that the condition holds, for example, when all chance moves are public, that is, both players observe all chance moves. This implies that an optimal EFCE, EFCCE and NFCCE can be computed in polynomial time in the game size in two-player games with public chance moves, providing the biggest positive complexity result surrounding extensive-form correlation in more than a decade. 
    more » « less
  5. null (Ed.)
    Unlike normal-form games, where correlated equilibria have been studied for more than 45 years, extensive-form correlation is still generally not well understood. Part of the reason for this gap is that the sequential nature of extensive-form games allows for a richness of behaviors and incentives that are not possible in normal-form settings. This richness translates to a significantly different complexity landscape surrounding extensive-form correlated equilibria. As of today, it is known that finding an optimal extensive-form correlated equilibrium (EFCE), extensive-form coarse correlated equilibrium (EFCCE), or normal-form coarse correlated equilibrium (NFCCE) in a two-player extensive-form game is computationally tractable when the game does not include chance moves, and intractable when the game involves chance moves. In this paper we significantly refine this complexity threshold by showing that, in two-player games, an optimal correlated equilibrium can be computed in polynomial time, provided that a certain condition is satisfied. We show that the condition holds, for example, when all chance moves are public, that is, both players observe all chance moves. This implies that an optimal EFCE, EFCCE and NFCCE can be computed in polynomial time in the game size in two-player games with public chance moves, providing the biggest positive complexity result surrounding extensive-form correlation in more than a decade. 
    more » « less