In the USA, municipal solid waste (MSW) landfills constitute one of the major anthropogenic sources of methane emissions. In the landfill cover soils employed at MSW landfills, aerobic methane-oxidizing bacteria (MOB) convert CH4 to CO2, thereby partially mitigating the CH4 emissions to the atmosphere. In this study, culture-dependent and culture-independent techniques were employed to evaluate methane oxidation capacity and to characterize the microbial community in landfill cover soil. Microcosms with synthetic landfill gas headspace were used to measure potential methane oxidation rates in landfill cover soil and in methanotrophs-enriched microbial consortia. The results demonstrate that the enriched landfill cover soil supported the growth of a diverse group of methanotrophic and methylotrophic microorganisms, and were dominated by Type I methanotrophs showing positive correlation with CH4 oxidation rates.
more »
« less
Coal Ash Triggers an Elevated Temperature Landfill Development: Lessons from the Bristol Virginia Solid Waste Landfill Neighboring Community
Landfills for disposing of solid waste are designed, located, managed, and monitored facilities expected to comply with government regulations to prevent contamination of the surrounding environment. After the average life expectancy of a typical landfill (30 to 50 years), a large investment in the construction, operation, final closure, and 30-year monitoring of a new site is needed. In this case study, we provide a holistic explanation of the unexpected development of elevated temperature landfills (ETLFs), such as that in the city of Bristol (United States) on the border of the states of Virginia and Tennessee, including the initial role played by coal ash. Despite the increasing frequency of ETLF occurrence, there is limited knowledge available about their associated environmental problems. The study uses mixed (qualitative, quantitative, and mapping) methods to analyze (1) the levels of odoriferous reduced sulfur compounds, ammonia, and volatile organic compounds (VOCs) emitted, (2) the ratio of methane to carbon dioxide concentrations in five locations, which dropped from unity (normal landfill) to 0.565, (3) the location of gas well heads with gradients of elevated temperatures, and (4) the correlation of the filling rate (upward of ~12 m y−1) with depth for registered events depositing coal ash waste. The work identifies spatial patterns that support the conclusion that coal ash served as the initiator for an ETLF creation. The case of the city of Bristol constitutes an example of ETLFs with elevated temperatures above the regulatory United States Environmental Protection Agency (EPA) upper threshold (65 °C), having alongside low methane emissions, large production of leachate, land subsidence, and a large production of organic compounds. Such landfills suffer abnormal chemical reactions within the waste mass that reduce the life expectancy of the site. Residents in such communities suffer intolerable odors from fugitive emissions and poor air quality becomes prominent, affecting the well-being and economy of surrounding populations. Conclusive information available indicates that the Bristol landfill has been producing large amounts of leachate and hazardous gases under the high pressures and temperatures developed within the landfill. A lesson learned, which should be used to prevent this problem in the future, is that the early addition of coal ash into the landfill would have catalyzed the process of ETLF creation. The work considers the public health risks and socioeconomic problems of residents exposed to emissions from an ETLF and discusses the efforts needed to prevent further incidents in other locations.
more »
« less
- PAR ID:
- 10550122
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Environments
- Volume:
- 11
- Issue:
- 9
- ISSN:
- 2076-3298
- Page Range / eLocation ID:
- 201
- Subject(s) / Keyword(s):
- VOCs landfill public health pollution climate change coal ash
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Municipal solid waste (MSW) landfills are the third largest anthropogenic source of methane (CH4) emissions in the United States. Part of the CH4 generated in landfills is converted to carbon dioxide (CO2) by CH4-oxidizing bacteria (MOB) present in the landfill cover soil, whose activity is controlled by various environmental factors including temperature. As landfill temperature fluctuates substantially due to seasonal variations and series of reactions during waste decomposition, which may affect the microbial activity and thus, the rates of CH4 oxidation. This study aims at analyzing the effect of temperature on CH4 oxidation potential and microbial community structure of methanotrophs in laboratory-based microcosm studies on landfill cover soil. Landfill cover soil samples were incubated at selectively two temperatures 23C and 50C, and rates of CH4 oxidation were measured, and microbial community structure was analyzed using shotgun metagenome sequencing. CH4 oxidation occurred at both temperatures in soil microcosm tests with highest activity at 23C. A corresponding shift in the soil microbiota was observed, with a transition from mesophilic to thermophilic methanotrophs with increased incubation temperature. The study shows that temperature is a critical factor affecting rates of CH4 oxidation in landfill cover soil, and the changing rates of CH4 oxidation are in part driven by shift in the methylotroph community.more » « less
-
Transforming the organic fraction of municipal solid waste (OFMSW) into biochar to reduce fugitive landfill emissions and control organic micropollutants (OMP) during landfill leachate treatment could provide a new circular economy organics diversion approach. However, research on landfill leachate treatment under consistent, representative conditions with biochar derived from the wide range of OFMSW components is needed. Further, the competitive nature of leachate dissolved organic matter (DOM) for biochar adsorption sites has not been examined. To this end, biochars were produced from seven diverse OFMSW types and batch tested using two representative organic contaminants. To evaluate leachate DOM impact on OMP removal and fouling mitigation with biochar enhancement methods, experiments were performed with three background matrices (deionized water, synthetic leachate, real leachate) and two enhancement methods (ash-pretreatment, double-heating). Since evaluating all possible OFMSW feedstock combinations is infeasible, fundamental relationships between individual feedstocks and biochar properties were evaluated. Overall, biochar performance varied substantially; the dose to achieve a given target removal spanned an order of magnitude between the OFMSW feedstocks. Also, the presence of leachate DOM more negatively impacted the performance of all biochars relative to the benchmark adsorbent activated carbon. Finally, the enhancement methods altered biochar pore structure by increasing micropore and slightly decreasing non-micropore surface areas, resulting in improved adsorption capacity (by 23 to 93%). By providing the basis for a low-cost, enhanced leachate treatment method, this study could incentivize a novel organics diversion approach that reduces climate change impacts, harvests energy from waste, and reduces landfill air emissions.more » « less
-
ABSTRACT Landfill leachate management is a critical challenge for the municipal solid waste (MSW) industry due to its significant environmental impact and high operational costs. In the United States, sanitary landfilling remains the primary MSW disposal method, with more than half of generated waste landfilled as of 2022. The U.S. generates between 7.1 and 11.3 billion gallons of landfill leachate annually, with up to one-third of landfill operational costs dedicated to leachate management. Leachate production can persist for decades after landfill closure, necessitating long-term management strategies. Around 61% of landfill leachate is disposed of at publicly owned treatment works (POTWs). These facilities face challenges in treating hazardous leachate components, including high Total Nitrogen levels, UV quenching substances (UVQS), refractory dissolved organic nitrogen (rDON), elevated temperature landfill (ETLF) leachate, micro- and nanoplastics (MP/NP), and per- and polyfluoroalkyl substances (PFAS). This presentation will explore the historical context of landfill leachate management and the challenges of co-treating leachate at POTWs. It will also identify emerging solutions and technologies aimed at improving treatment processes, enhancing environmental protection, and reducing costs. Addressing these challenges is crucial for minimizing the environmental footprint of landfill operations and ensuring compliance with regulatory standards.more » « less
-
Among many anthropogenic sources of greenhouse gases (GHG), landfill emissions, consisting of methane (CH4) and carbon dioxide (CO2), are one of the major contributors of anthropogenic GHG. In recent years, various innovative landfill biocovers have been investigated and developed to mitigate the emissions of methane (CH4) from municipal solid waste (MSW) landfills. However, the problem of CO2 emissions [which constitute about 40% of landfill gas (LFG)] from MSW landfills still remains unresolved. An innovative cover system which consists of basic oxygen furnace (BOF) slag with biochar amended soil is being developed to mitigate CH4 and CO2 emissions from landfills. The biochar amended soil is effective in mitigating CH4 emissions by microbial methane oxidation, while BOF slag could be effective in sequestering CO2 emissions by carbonation mechanisms. However, the properties of BOF slag vary based on several factors such as mineralogical composition of slag, particle size, moisture content, and temperature. In this study, CO2 sequestration potential of BOF slag was evaluated under synthetic LFG condition. The performance of the BOF slag in sequestering CO2 under different moisture condition was also examined. The results showed that BOF slag can sequester substantial amount of CO2 under LFG condition. The study also enlightened the importance of moisture for initiating carbonation reaction; however, the moisture alone was not the controlling parameter for CO2 sequestration. The mineralogy of the BOF slag plays an important role in determining CO2 sequestration capacity of the slag.more » « less
An official website of the United States government

