We present Weak Gravitational Lensing measurements of a sample of 157 clusters within the Kilo Degree Survey (KiDS), detected with a > 5σthermal Sunyaev-Zel’dovich (SZ) signal by the Atacama Cosmology Telescope (ACT). Using a halo-model approach, we constrained the average total cluster mass,MWL, accounting for the ACT cluster selection function of the full sample. We find that the SZ cluster mass estimateMSZ, which was calibrated using X-ray observations, is biased withMSZ/MWL = (1 − bSZ) = 0.65 ± 0.05. Separating the sample into six mass bins, we find no evidence of a strong mass dependency for the mass bias, (1 − bSZ). Adopting this ACT-KiDS SZ mass calibration would bring thePlanckSZ cluster count into agreement with the counts expected from thePlanckcosmic microwave background ΛCDM cosmological model, although it should be noted that the cluster sample considered in this work has a lower average massMSZ, uncor = 3.64 × 1014 M⊙compared to thePlanckcluster sample which has an average mass in the rangeMSZ, uncor = (5.5 − 8.5)×1014 M⊙, depending on the sub-sample used.
more »
« less
Decoding the early Universe: exploring a merger scenario for the high-redshift cluster JKCS041 using numerical models
ABSTRACT JKCS041 ($z=1.8$) is one of the most distant galaxy cluster systems known, seen when the Universe was less than 4 billion years old. Recent Sunyaev–Zeldovich (SZ) observations show a temperature decrement that is less than expected based on mass estimates of the system from X-ray, weak gravitational lensing, and galaxy richness measurements. In this paper, we seek to explain the observables – in particular the low SZ decrement and single SZ peak, the projected offset between the X-ray and SZ peaks of $$\approx$$220 kpc, the gas mass measurements and the lensing mass estimate. We use the gamer-2 hydrodynamic code to carry out idealized numerical simulations of cluster mergers and compare resulting synthetic maps with the observational data. Generically, a merger process is necessary to reproduce the observed offset between the SZ and X-ray peaks. From our exploration of parameter space, seen a few tenths of a Gyr after first core passage, two components with total mass of $$\approx 2\times 10^{14} \,\text{M}_\odot$$, mass ratio of $$\approx$$2:3, gas fraction of $0.05-0.1$, and Navarro, Frenk and White mass density profile concentrations c$$\approx$$ 5 are scenarios that are consistent with the observational data. For consistency with the SZ and X-ray measurements, our simulations exclude total mass in excess of $$\approx 3\times 10^{14} {\rm M}_{\odot }$$, primarily based on the SZ signal. The mass ratio is constrained by the SZ–X-ray offset and magnitude of the SZ signal, ruling out systems with equal and vastly different masses.
more »
« less
- Award ID(s):
- 2050781
- PAR ID:
- 10550252
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 534
- Issue:
- 4
- ISSN:
- 0035-8711
- Format(s):
- Medium: X Size: p. 3676-3687
- Size(s):
- p. 3676-3687
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)ABSTRACT We present measurements of the radial profiles of the mass and galaxy number density around Sunyaev–Zel’dovich (SZ)-selected clusters using both weak lensing and galaxy counts. The clusters are selected from the Atacama Cosmology Telescope Data Release 5 and the galaxies from the Dark Energy Survey Year 3 data set. With signal-to-noise ratio of 62 (45) for galaxy (weak lensing) profiles over scales of about 0.2–20 h−1 Mpc, these are the highest precision measurements for SZ-selected clusters to date. Because SZ selection closely approximates mass selection, these measurements enable several tests of theoretical models of the mass and light distribution around clusters. Our main findings are: (1) The splashback feature is detected at a consistent location in both the mass and galaxy profiles and its location is consistent with predictions of cold dark matter N-body simulations. (2) The full mass profile is also consistent with the simulations. (3) The shapes of the galaxy and lensing profiles are remarkably similar for our sample over the entire range of scales, from well inside the cluster halo to the quasilinear regime. We measure the dependence of the profile shapes on the galaxy sample, redshift, and cluster mass. We extend the Diemer & Kravtsov model for the cluster profiles to the linear regime using perturbation theory and show that it provides a good match to the measured profiles. We also compare the measured profiles to predictions of the standard halo model and simulations that include hydrodynamics. Applications of these results to cluster mass estimation, cosmology, and astrophysics are discussed.more » « less
-
ABSTRACT We search for signatures of cosmological shocks in gas pressure profiles of galaxy clusters using the cluster catalogues from three surveys: the Dark Energy Survey (DES) Year 3, the South Pole Telescope (SPT) SZ survey, and the Atacama Cosmology Telescope (ACT) data releases 4, 5, and 6, and using thermal Sunyaev–Zeldovich (SZ) maps from SPT and ACT. The combined cluster sample contains around 105 clusters with mass and redshift ranges $$10^{13.7} \lt M_{\rm 200m}/\, {\rm M}_\odot \lt 10^{15.5}$$ and 0.1 < z < 2, and the total sky coverage of the maps is $$\approx 15\, 000 \deg ^2$$. We find a clear pressure deficit at R/R200m ≈ 1.1 in SZ profiles around both ACT and SPT clusters, estimated at 6σ significance, which is qualitatively consistent with a shock-induced thermal non-equilibrium between electrons and ions. The feature is not as clearly determined in profiles around DES clusters. We verify that measurements using SPT or ACT maps are consistent across all scales, including in the deficit feature. The SZ profiles of optically selected and SZ-selected clusters are also consistent for higher mass clusters. Those of less massive, optically selected clusters are suppressed on small scales by factors of 2–5 compared to predictions, and we discuss possible interpretations of this behaviour. An oriented stacking of clusters – where the orientation is inferred from the SZ image, the brightest cluster galaxy, or the surrounding large-scale structure measured using galaxy catalogues – shows the normalization of the one-halo and two-halo terms vary with orientation. Finally, the location of the pressure deficit feature is statistically consistent with existing estimates of the splashback radius.more » « less
-
We present a Hubble Space Telescope (HST) weak gravitational lensing study of nine distant and massive galaxy clusters with redshifts 1.0 ≲ z ≲ 1.7 ( z median = 1.4) and Sunyaev Zel’dovich (SZ) detection significance ξ > 6.0 from the South Pole Telescope Sunyaev Zel’dovich (SPT-SZ) survey. We measured weak lensing galaxy shapes in HST/ACS F 606 W and F 814 W images and used additional observations from HST/WFC3 in F 110 W and VLT/FORS2 in U HIGH to preferentially select background galaxies at z ≳ 1.8, achieving a high purity. We combined recent redshift estimates from the CANDELS/3D-HST and HUDF fields to infer an improved estimate of the source redshift distribution. We measured weak lensing masses by fitting the tangential reduced shear profiles with spherical Navarro-Frenk-White (NFW) models. We obtained the largest lensing mass in our sample for the cluster SPT-CL J2040−4451, thereby confirming earlier results that suggest a high lensing mass of this cluster compared to X-ray and SZ mass measurements. Combining our weak lensing mass constraints with results obtained by previous studies for lower redshift clusters, we extended the calibration of the scaling relation between the unbiased SZ detection significance ζ and the cluster mass for the SPT-SZ survey out to higher redshifts. We found that the mass scale inferred from our highest redshift bin (1.2 < z < 1.7) is consistent with an extrapolation of constraints derived from lower redshifts, albeit with large statistical uncertainties. Thus, our results show a similar tendency as found in previous studies, where the cluster mass scale derived from the weak lensing data is lower than the mass scale expected in a Planckν ΛCDM (i.e. ν Λ cold dark matter) cosmology given the SPT-SZ cluster number counts.more » « less
-
Abstract We show the improvement to cosmological constraints from galaxy cluster surveys with the addition of cosmic microwave background (CMB)-cluster lensing data. We explore the cosmological implications of adding mass information from the 3.1σdetection of gravitational lensing of the CMB by galaxy clusters to the Sunyaev–Zel’dovich (SZ) selected galaxy cluster sample from the 2500 deg2SPT-SZ survey and targeted optical and X-ray follow-up data. In the ΛCDM model, the combination of the cluster sample with the Planck power spectrum measurements prefers . Adding the cluster data reduces the uncertainty on this quantity by a factor of 1.4, which is unchanged whether the 3.1σCMB-cluster lensing measurement is included or not. We then forecast the impact of CMB-cluster lensing measurements with future cluster catalogs. Adding CMB-cluster lensing measurements to the SZ cluster catalog of the ongoing SPT-3G survey is expected to improve the expected constraint on the dark energy equation of statewby a factor of 1.3 toσ(w) = 0.19. We find the largest improvements from CMB-cluster lensing measurements to be forσ8, where adding CMB-cluster lensing data to the cluster number counts reduces the expected uncertainty onσ8by respective factors of 2.4 and 3.6 for SPT-3G and CMB-S4.more » « less
An official website of the United States government
