skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Electrospinning of Heterogeneous Nanofibers: A Review
Electrospinning is a straightforward approach for efficiently creating continuous fibers within the submicron to nanometer size range. Electrospun fibers possess excellent properties like high porosity, large specific surface area, tunable morphology, small diameter, etc., making them desirable in various applications. Because of its various properties, polymer is one of the most used materials as the spinning solution in electrospinning. Electrospun polymeric fibers, by themselves, may serve limited applications. Therefore, they are usually mixed with other materials to serve many applications. There are many ways in which these other materials are mixed with polymers in electrospinning, like doping, surface treatment, functionalization, etc. There are several studies published that report on the various composite fibers produced using electrospinning. However, a review focused solely on the production of heterogeneous fibers, where the electrospun fibers are intrinsically made of more than one material, is lacking. Herein, we review different heterogeneous fibers synthesized using electrospinning and their fabrication methods.  more » « less
Award ID(s):
2046929
PAR ID:
10550457
Author(s) / Creator(s):
; ;
Publisher / Repository:
The Electrochemical Society
Date Published:
Journal Name:
ECS Advances
Volume:
3
Issue:
4
ISSN:
2754-2734
Format(s):
Medium: X Size: Article No. 041001
Size(s):
Article No. 041001
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Electrospinning has emerged as a versatile and accessible technology for fabricating polymer fibers, particularly for biological applications. Natural polymers or biopolymers (including synthetically derivatized natural polymers) represent a promising alternative to synthetic polymers, as materials for electrospinning. Many biopolymers are obtained from abundant renewable sources, are biodegradable, and possess inherent biological functions. This review surveys recent literature reporting new fibers produced from emerging biopolymers, highlighting recent developments in the use of sulfated polymers (including carrageenans and glycosaminoglycans), tannin derivatives (condensed and hydrolyzed tannins, tannic acid), modified collagen, and extracellular matrix extracts. The proposed advantages of these biopolymer‐based fibers, focusing on their biomedical applications, are also discussed to highlight the use of new and emerging biopolymers (or new modifications to well‐established ones) to enhance or achieve new properties for electrospun fiber materials. 
    more » « less
  2. null (Ed.)
    Electrospinning has gained constant enthusiasm and wide interest as a novel sustainable material processing technique due to its ease of operation and wide adaptability for fabricating eco-friendly fibers on a nanoscale. In addition, the device working parameters, spinning solution properties, and the environmental factors can have a significant effect on the fibers’ morphology during electrospinning. This review summarizes the newly developed principles and influence factors for electrospinning technology in the past five years, including these factors’ interactions with the electrospinning mechanism as well as its most recent applications of electrospun natural or sustainable composite materials in biology, environmental protection, energy, and food packaging materials. 
    more » « less
  3. Abstract Electrospinning is increasingly used as a staple technology for the fabrication of nano‐ and micro‐fibers of different materials. Most processes utilize direct current (DC) electrospinning, and a multitude of DC‐electrospinning tools ranging from research to commercial production systems is currently available. Yet, there are numerous studies performed on electrospinning techniques utilizing non‐DC, periodic electric fields, or alternating current (AC) electrospinning. Those studies demonstrate the strong potential of AC‐electrospinning for the sustainable production of various nanofibrous materials and structures. Although tremendous progress is achieved in the development of AC‐electrospinning over the last 10 years, this technique remains uncommon. This paper reviews the AC‐electrospinning concepts, instrumentation, and technology. The main focus of this review is the most studied, “electric wind” driven AC‐electrospinning technique tentatively named alternating field electrospinning (AFES). The latter term emphasizes the role of the AC electric field's confinement to the fiber‐generating electrode and the absence of a counter electrode in such an electrospinning system. The synopses of AFES process parameters, fiber‐generating spinneret designs, benefits and obstacles, advancements in AC electrospun nano/micro‐fibrous materials/structures and their applications are given, and future directions are discussed. 
    more » « less
  4. Abstract Electrospun fish gelatin (FGel) nanofibers (NF) mimic the natural bodies extracellular matrix's (ECM) structure and are an attractive material for many biomedical applications. However, FGel poor mechanical properties and rapid dissolution in an aqueous media paired with usually low productivity of the typical electrospinning process necessitate further effort in overcoming these issues. In this study, alternating field electrospinning (AFES) fabricates cold water fish skin gelatin nanofibrous materials (FGel NFM) with up to 10 wt.% Dextran (DEX) or acetyl glucosamine (AGA) from pure aqueous solutions at process productivity of 7.92–8.90 g∙h−1. Thermal crosslinking of as‐spun materials resulted in FGel‐based NFM with 125–325 nm fiber diameters. DEX (MW500k and MW75k) and AGA additives cause different effects on FGel fiber diameters, structure, tensile and degradation behavior, and in vitro performance. All tested materials reveal favorable, but not the same, cellular response through the formation of a confluent layer on the NFM surface regardless of the fibers’ composition despite the significant difference in FGel NFM structure and properties. Results show that AFES and thermal crosslinking of FGel‐based NFM can lead to a sustainable “green” fabrication technology of mono‐ and polysaccharide modified FGel‐based NFM scaffolds with the parameters attuned to targeted biomedical applications. 
    more » « less
  5. Inherently conductive polymers (CPs) can generally be switched between two or more stable oxidation states, giving rise to changes in properties including conductivity, color, and volume. The ability to prepare CP nanofibers could lead to applications including water purification, sensors, separations, nerve regeneration, wound healing, wearable electronic devices, and flexible energy storage. Electrospinning is a relatively inexpensive, simple process that is used to produce polymer nanofibers from solution. The nanofibers have many desirable qualities including high surface area per unit mass, high porosity, and low weight. Unfortunately, the low molecular weight and rigid rod nature of most CPs cannot yield enough chain entanglement for electrospinning, instead yielding polymer nanoparticles via an electrospraying process. Common workarounds include co-extruding with an insulating carrier polymer, coaxial electrospinning, and coating insulating electrospun polymer nanofibers with CPs. This review explores the benefits and drawbacks of these methods, as well as the use of these materials in sensing, biomedical, electronic, separation, purification, and energy conversion and storage applications. 
    more » « less