skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 2 until 12:00 AM ET on Saturday, May 3 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on September 4, 2025

Title: Vortex Spin Liquid with Fractional Quantum Spin Hall Effect in Moiré Chern Bands
Award ID(s):
2237031
PAR ID:
10550573
Author(s) / Creator(s):
Publisher / Repository:
American Physical Society
Date Published:
Journal Name:
Physical Review Letters
Volume:
133
Issue:
10
ISSN:
0031-9007; PRLTAO
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Stabilization of topological spin textures in layered magnets has the potential to drive the development of advanced low-dimensional spintronics devices. However, achieving reliable and flexible manipulation of the topological spin textures beyond skyrmion in a two-dimensional magnet system remains challenging. Here, we demonstrate the introduction of magnetic iron atoms between the van der Waals gap of a layered magnet, Fe3GaTe2, to modify local anisotropic magnetic interactions. Consequently, we present direct observations of the order-disorder skyrmion lattices transition. In addition, non-trivial topological solitons, such as skyrmioniums and skyrmion bags, are realized at room temperature. Our work highlights the influence of random spin control of non-trivial topological spin textures. 
    more » « less
  2. null (Ed.)