skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Wigner non-negative states that verify the Wigner entropy conjecture
Award ID(s):
2122337
PAR ID:
10551895
Author(s) / Creator(s):
;
Publisher / Repository:
American Physical Society
Date Published:
Journal Name:
Physical Review A
Volume:
110
Issue:
1
ISSN:
2469-9926; PLRAAN
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Advancements in quantum system lifetimes and control have enabled the creation of increasingly complex quantum states, such as those on multiple bosonic cavity modes. When characterizing these states, traditional tomography scales exponentially with the number of modes in both computational and experimental measurement requirement, which becomes prohibitive as the system size increases. Here, we implement a state reconstruction method whose sampling requirement instead scales polynomially with system size, and thus mode number, for states that can be represented within such a polynomial subspace. We demonstrate this improved scaling with Wigner tomography of multimode entangled W states of up to 4 modes on a 3D circuit quantum electrodynamics (cQED) system. This approach performs similarly in efficiency to existing matrix inversion methods for 2 modes, and demonstrates a noticeable improvement for 3 and 4 modes, with even greater theoretical gains at higher mode numbers. 
    more » « less