Single point incremental forming (SPIF) is a flexible manufacturing process that has applications in industries ranging from biomedical to automotive. In addition to rapid prototyping, which requires easy adaptations in geometry or material for design changes, control of the final part properties is desired. One strategy that can be implemented is stress superposition, which is the application of additional stresses during an existing manufacturing process. Tensile and compressive stresses applied during SPIF showed significant effects on the resulting microstructure in stainless steel 304 truncated square pyramids. Specifically, the amount of martensitic transformation was increased through stress superposed incremental forming. Finite element analyses with advanced material modeling supported that the stress triaxiality had a larger effect than the Lode angle parameter on the phase transformation that occurred during deformation. By controlling the amount of tensile and compressive stresses superposed during incremental forming, the microstructure of the final component can be manipulated based on the intended application and desired final part properties.
This content will become publicly available on December 1, 2025
- Award ID(s):
- 1757371
- PAR ID:
- 10552078
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- CIRP Journal of Manufacturing Science and Technology
- Volume:
- 55
- Issue:
- C
- ISSN:
- 1755-5817
- Page Range / eLocation ID:
- 28 to 41
- Subject(s) / Keyword(s):
- Stainless steel single point incremental forming martensite transformation stress triaxiality Lode angle parameter
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Uniaxial tension is a universal material characterization experiment. However, studies have shown that increased formability can be achieved with simultaneous bending and unbending of the material. This so-called continuous bending under tension process is an example of bending stress superposition to a uniaxial tension process. In this research, experiments are conducted on stainless steel 304 to investigate the effects of bending stress superposition on the austenite to martensite phase transformation. Two vortex tubes are mounted to the carriage of the machine and used to decrease the temperature in a localized region of the specimen to evaluate two temperature conditions. The in-situ strain and temperature fields are captured using 3D digital image correlation and infrared cameras. The deformation induced α′ -martensite volume fraction is measured at regular intervals along the deformed gauge length using a Feritscope. The number of cycles that the rollers traverse the gauge length, corresponding to the strain level, is also varied to create five conditions. The deformed specimens revealed heterogeneous martensite transformation along the gauge length due to the non-uniform temperature fields observed for each test condition. Decreasing the temperature and increasing the number of cycles led to the highest amount of phase transformation for this bending-tension superposed process. These results provide insight on how stress superposition can be applied to vary the phase transformation in more complex manufacturing processes, such as incremental forming, which combines bending, tension, and shear deformation.more » « less
-
Abstract Superposing pre-stress on a SS304 sheet metal blank in biaxial tension and performing a single point incremental forming operation on the stretched blank is investigated experimentally. By applying a pre-stress to the sheet metal blank prior to incremental forming, the resulting microstructural change can be affected to obtain functionally graded materials according to the intended application. In austenitic stainless steels, this variation of the stress states alters the phase transformation, specifically the martensitic transformation kinetics, by influencing key process parameters, such as process force, temperature, and equivalent plastic strain. The phase transformation in truncated square pyramids is measured using magnetic induction. These measurements validate the effectiveness of the stress superposition method for achieving the desired mechanical properties based on altering the final microstructure of a simple geometry.more » « less
-
Abstract Incremental sheet metal forming is known for its high flexibility, making it suitable for fabricating low-batch, highly customized complex parts. In this article, a localized multipass toolpath referred to as localized reforming, with reverse forming in a region of interest, is employed within the double-sided incremental forming (DSIF) process to manipulate the mechanical properties of a truncated pyramid formed from austenitic stainless steel sheet, SS304, through deformation-induced martensite transformation. DSIF forms a clamped sheet through localized deformations by two opposing tools. The toolpath effect in localized reforming is examined in terms of martensite transformation, geometrical accuracy, and thickness distribution. The results are compared with a conventional toolpath, i.e., forming in a single pass. The results show that varying toolpaths lead to different martensite transformation levels, while final geometry and thickness remain similar. The study demonstrates that localized reforming significantly increases martensite transformation in the specified region, i.e., the center of the pyramid wall, to ∼70%, with a martensite fraction remaining around 25% elsewhere. In comparison, using a single pass forming toolpath leads to a decreasing martensite fraction from the base of the pyramid toward the apex, due to the heat generated, with values <10% along the entire wall. Through finite element simulation, it is shown that the increase in martensite transformation of the region of interest is with the plastic deformation accumulation during the reverse pass. These findings highlight the potential to tailor mechanical properties in specific areas using a reforming toolpath in DSIF.
-
This study primarily aims to develop a robust modelling approach to capture complex material behavior of CP-Ti, appeared by high anisotropy, differential hardening due to anisotropy evolution, and flow behavior sensitive to strain rate and temperature, using artificial neural networks (ANNs). Plasticity is characterized by uniaxial tension and in-plane biaxial tension tests at temperatures of 0°C and 20°C with strain rates of 0.001 /s and 0.01 /s, and the results are used to calibrate the non-quadratic anisotropic Yld2000-3d yield function with respect to the plastic work. In order to predict the intricate plastic deformation with the temperature and strain rate effects, two distinct ANN models are developed; one is to capture the strain hardening behavior and the other to predict the anisotropic parameters in the chosen yield function. The developed ANN models predict an unseen dataset well, which is intermediate testing conditions at a temperature of 10°C and strain rate of 0.005 /s. The ANN models, being computationally stable and adhering to conventional constitutive equations, are implemented into a user material subroutine for the ductile fracture characterization of CP-Ti sheet using the hybrid experimental-numerical analysis. The favorable agreement between experimental data and numerical predictions, particularly using the ANN models with evolving anisotropic material parameters for the Yld2000-3d yield function, underscores the significance of differential hardening effect on the ductile fracture behavior and highlights the capabilities of ANN models to capture the complex plastic behavior of CP-Ti. The key parameters including stress triaxiality, Lode angle parameter, and equivalent plastic strain at the fracture location are extracted from the simulations, enabling the calibration of ductile fracture models, namely Johnson-Cook, Hosford-Coulomb, and Lou-2014, and construction of fracture envelopes.more » « less