Abstract Quantifying ecosystem resilience to disturbance is important for understanding the effects of disturbances on ecosystems, especially in an era of rapid global change. However, there are few studies that have used standardized experimental disturbances to compare resilience patterns across abiotic gradients in real‐world ecosystems. Theoretical studies have suggested that increased return times are associated with increasing variance during recovery from disturbance. However, this notion has rarely been explicitly tested in field, in part due to the challenges involved in obtaining long‐term experimental data. In this study, we examined resilience to disturbance of 12 coastal marsh sites (five low‐salinity and seven polyhaline [=salt] marshes) along a salinity gradient in Georgia, USA. We found that recovery times after experimental disturbance ranged from 7 to >127 months, and differed among response variables (vegetation height, cover and composition). Recovery rates decreased along the stress gradient of increasing salinity, presumably due to stress reducing plant vigor, but only when low‐salinity and polyhaline sites were analyzed separately, indicating a strong role for traits of dominant plant species. The coefficient of variation of vegetation cover and height in control plots did not vary with salinity. In disturbed plots, however, the coefficient of variation (CV) was consistently elevated during the recovery period and increased with salinity. Moreover, higher CV values during recovery were correlated with slower recovery rates. Our results deepen our understanding of resilience to disturbance in natural ecosystems, and point to novel ways that variance can be used either to infer recent disturbance, or, if measured in areas with a known disturbance history, to predict recovery patterns.
more »
« less
Bacterial community response to novel and repeated disturbances
Abstract Disturbance response and recovery are increasingly important in microbial ecology, as microbes may recover from disturbances differently than macro communities. Past disturbances can alter microbial community structure and their response to subsequent disturbance events, but it remains unclear if the same recovery patterns persist after long‐term exposure to stress. Here, we compare bacterial community composition in a community that experienced 2 years of monthly salinity addition disturbances with a community that has not experienced salinity additions. We then track the response and recovery to an additional salinity addition based on past disturbance exposure. We tested the following hypotheses: first, communities with a repeated disturbance history will have a different community composition than communities without a disturbance history; second, communities exposed to repeated disturbances will undergo a different recovery trajectory than communities experiencing a novel disturbance. We find that repeated disturbances alter community composition and affect community response and recovery to a subsequent disturbance after 2 years, primarily through increased resistance. This work enhances our understanding of microbial temporal dynamics and suggests that novel disturbances may pose a threat to microbial community structure and function.
more »
« less
- Award ID(s):
- 2141922
- PAR ID:
- 10552145
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Environmental Microbiology Reports
- Volume:
- 16
- Issue:
- 5
- ISSN:
- 1758-2229
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Summary Disturbances, here defined as events that directly alter microbial community composition, are commonly studied in host‐associated and engineered systems. In spite of global change both altering environmental averages and increasing extreme events, there has been relatively little research into the causes, persistence and population‐level impacts of disturbance in the dynamic coastal ocean. Here, we utilize 3 years of observations from a coastal time series to identify disturbances based on the largest week‐over‐week changes in the microbiome (i.e. identifying disturbance as events that alter the community composition). In general, these microbiome disturbances were not clearly linked to specific environmental factors and responsive taxa largely differed, aside from SAR11, which generally declined. However, several disturbance metagenomes identified increased phage‐associated genes, suggesting that unexplained community shifts might be caused by increased mortality. Furthermore, a category 1 hurricane, the only event that would likely be classifieda priorias an environmental disturbance, was not an outlier in microbiome composition, but did enhance a bloom in seasonally abundant phytoplankton. Thus, as extreme environmental changes intensify, assumptions of what constitutes a disturbance should be re‐examined in the context of ecological history and microbiome responses.more » « less
-
Abstract AimClimate‐induced pulse (e.g., hurricanes) and press (e.g., global warming) disturbances represent threats to populations, communities, and the ecosystem services that they provide. We leveraged three decades of annual data on tropical gastropods to quantify the effects of major hurricanes, associated secondary succession, and global warming on abundance, biodiversity, and species composition. LocationLuquillo Mountains, Puerto Rico. MethodsGastropod abundance, biodiversity, and composition were estimated annually for each of 27 years in a tropical montane forest that experienced three major hurricanes (Hugo, Georges, and Maria). Generalized linear mixed‐effects, linear mixed‐effects, and linear models evaluated population‐ and community‐level responses to year, ambient temperature, understorey temperature, hurricane, and time since hurricane. Variation partitioning determined the unique and shared variation in biotic responses associated with temperature, disturbance, and succession. ResultsRather than declining, gastropod abundances generally increased through time, whereas the responses of biodiversity were weak and scale dependent. Hurricanes and associated secondary succession, rather than ambient atmospheric temperature, moulded long‐term trends in abundances and biodiversity. Main conclusionsGlobal warming over the past 30 years has not progressed sufficiently to elicit significant responses by gastropods in the Luquillo Mountains. Rather, effects from pulse disturbances (i.e., hurricanes) and secondary succession currently drive long‐term variation in abundance and biodiversity. Gastropods evince high resilience in this tropical ecosystem. Historical exposure to recurrent hurricanes likely imbued the fauna with broad niches that make them resistant to current levels of global warming. We predict that biotic resiliency will be challenged once changes in temperature exceed interannual and inter‐habitat differences that typify this hurricane‐mediated system, or combine with an increased frequency of hurricanes and droughts to alter associations among environmental characteristics that define the fundamental niches of species. Only then might significant declines in abundance or the appearance of novel communities characterize the gastropod fauna in the Luquillo Mountains.more » « less
-
Abstract Sea level rise and changes in precipitation can cause saltwater intrusion into historically freshwater wetlands, leading to shifts in microbial metabolism that alter greenhouse gas emissions and soil carbon sequestration. Saltwater intrusion modifies soil physicochemistry and can immediately affect microbial metabolism, but further alterations to biogeochemical processing can occur over time as microbial communities adapt to the changed environmental conditions. To assess temporal changes in microbial community composition and biogeochemical activity due to saltwater intrusion, soil cores were transplanted from a tidal freshwater marsh to a downstream mesohaline marsh and periodically sampled over 1 year. This experimental saltwater intrusion produced immediate changes in carbon mineralization rates, whereas shifts in the community composition developed more gradually. Salinity affected the composition of the prokaryotic community but did not exert a strong influence on the community composition of fungi. After only 1 week of saltwater exposure, carbon dioxide production doubled and methane production decreased by three orders of magnitude. By 1 month, carbon dioxide production in the transplant was comparable to the saltwater controls. Over time, we observed a partial recovery in methane production which strongly correlated with an increase in the relative abundance of three orders of hydrogenotrophic methanogens. Taken together, our results suggest that ecosystem responses to saltwater intrusion are dynamic over time as complex interactions develop between microbial communities and the soil organic carbon pool. The gradual changes in microbial community structure we observed suggest that previously freshwater wetlands may not experience an equilibration of ecosystem function until long after initial saltwater intrusion. Our results suggest that during this transitional period, likely lasting years to decades, these ecosystems may exhibit enhanced greenhouse gas production through greater soil respiration and continued methanogenesis.more » « less
-
Growing season drought can be devastating to crop yields. Soil microbial communities have the potential to buffer yield loss under drought through increasing plant drought tolerance and soil water retention. Microbial inoculation on agricultural fields has been shown to increase plant growth, but few studies have examined the impact of microbial inoculation on plant and soil microbial drought tolerance. We conducted a rainout shelter experiment and subsequent greenhouse experiment to explore 3 objectives. First, we evaluated the performance of a large rainout shelter design for studying drought in agricultural fields. Second, we tested how crop (corn vs. soybean) and microbial inoculation alter the response of soil microbial composition, diversity, and biomass to drought. Third, we tested whether field inoculation treatments and drought exposure altered microbial communities in ways that promote plant drought tolerance in future generations. In our field experiment, the effects of drought on soil bacterial composition depended on crop type, while drought decreased bacterial diversity in corn plots and drought decreased microbial biomass carbon in soybean plots. Microbial inoculation did not alter overall microbial community composition, plant growth, or drought tolerance despite our efforts to address common barriers to inoculation success. Still, a history of inoculation affected growth of future plant generations in the greenhouse. Our study demonstrates the importance of plant species in shaping microbial community responses to drought and the importance of legacy effects of microbial inoculation.more » « less
An official website of the United States government
