skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Factoring using multiplicative relations modulo $n$: a subexponential algorithm inspired by the index calculus
We demonstrate that a modification of the classical index calculus algorithm can be used to factor integers. More generally, we reduce the factoring problem to finding an overdetermined system of multiplicative relations in any factor base modulo $$n$$, where $$n$$ is the integer whose factorization is sought. The algorithm has subexponential runtime $$\exp(O(\sqrt{\log n \log \log n}))$$ (or $$\exp(O( (\log n)^{1/3} (\log \log n)^{2/3} ))$$ with the addition of a number field sieve), but requires a rational linear algebra phase, which is more intensive than the linear algebra phase of the classical index calculus algorithm. The algorithm is certainly slower than the best known factoring algorithms, but is perhaps somewhat notable for its simplicity and its similarity to the index calculus.  more » « less
Award ID(s):
1652238
PAR ID:
10552284
Author(s) / Creator(s):
Publisher / Repository:
Mathematical Cryptology
Date Published:
Edition / Version:
2023
Volume:
3
Issue:
2
Format(s):
Medium: X
Location:
MathCrypt 2023, Santa Barbara, CA, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. We present new algorithms for computing many faces in arrangements of lines and segments. Given a set $$S$$ of $$n$$ lines (resp., segments) and a set $$P$$ of $$m$$ points in the plane, the problem is to compute the faces of the arrangements of $$S$$ that contain at least one point of $$P$$. For the line case, we give a deterministic algorithm of $$O(m^{2/3}n^{2/3}\log^{2/3} (n/\sqrt{m})+(m+n)\log n)$$ time. This improves the previously best deterministic algorithm [Agarwal, 1990] by a factor of $$\log^{2.22}n$$ and improves the previously best randomized algorithm [Agarwal, Matoušek, and Schwarzkopf, 1998] by a factor of $$\log^{1/3}n$$ in certain cases (e.g., when $$m=\Theta(n)$$). For the segment case, we present a deterministic algorithm of $$O(n^{2/3}m^{2/3}\log n+\tau(n\alpha^2(n)+n\log m+m)\log n)$$ time, where $$\tau=\min\{\log m,\log (n/\sqrt{m})\}$$ and $$\alpha(n)$$ is the inverse Ackermann function. This improves the previously best deterministic algorithm [Agarwal, 1990] by a factor of $$\log^{2.11}n$$ and improves the previously best randomized algorithm [Agarwal, Matoušek, and Schwarzkopf, 1998] by a factor of $$\log n$$ in certain cases (e.g., when $$m=\Theta(n)$$). We also give a randomized algorithm of $$O(m^{2/3}K^{1/3}\log n+\tau(n\alpha(n)+n\log m+m)\log n\log K)$$ expected time, where $$K$$ is the number of intersections of all segments of $$S$$. In addition, we consider the query version of the problem, that is, preprocess $$S$$ to compute the face of the arrangement of $$S$$ that contains any given query point. We present new results that improve the previous work for both the line and the segment cases. In particulary, for the line case, we build a data structure of $$O(n\log n)$$ space in $$O(n\log n)$$ randomized time, so that the face containing the query point can be obtained in $$O(\sqrt{n\log n})$$ time with high probability (more specifically, the query returns a binary search tree representing the face so that standard binary-search-based queries on the face can be handled in $$O(\log n)$$ time each and the face itself can be output explicitly in time linear in its size). 
    more » « less
  2. Ta-Shma, Amnon (Ed.)
    For every prime p > 0, every n > 0 and κ = O(log n), we show the existence of an unsatisfiable system of polynomial equations over O(n log n) variables of degree O(log n) such that any Polynomial Calculus refutation over 𝔽_p with M extension variables, each depending on at most κ original variables requires size exp(Ω(n²)/10^κ(M + n log n)) 
    more » « less
  3. We propose a quantum algorithm for computing an isogeny between two elliptic curves E1,E2 defined over a finite field such that there is an imaginary quadratic order O satisfying O~End(Ei )for i=1,2. This concerns ordinary curves and supersingular curves defined over Fp (the latter used in the recent CSIDH proposal). Our algorithm has heuristic asymptotic run time exp(O(√log(|Δ|))) and requires polynomial quantum memory and exp(O(√log(|Δ|))) quantumly accessible classical memory, where Δ is the discriminant of O. This asymptotic complexity outperforms all other available methods for computing isogenies.We also show that a variant of our method has asymptotic run time e exp(Õ(√log(|Δ|))) while requesting only polynomial memory (both quantum and classical). 
    more » « less
  4. We study local symmetry breaking problems in the Congest model, focusing on ruling set problems, which generalize the fundamental Maximal Independent Set (MIS) problem. The time (round) complexity of MIS (and ruling sets) have attracted much attention in the Local model. Indeed, recent results (Barenboim et al., FOCS 2012, Ghaffari SODA 2016) for the MIS problem have tried to break the long-standing O(log n)-round “barrier” achieved by Luby’s algorithm, but these yield o(log n)-round complexity only when the maximum degree  is somewhat small relative to n. More importantly, these results apply only in the Local model. In fact, the best known time bound in the Congest model is still O(log n) (via Luby’s algorithm) even for moderately small  (i.e., for  = (log n) and  = o(n)). Furthermore, message complexity has been largely ignored in the context of local symmetry breaking. Luby’s algorithm takes O(m) messages on m-edge graphs and this is the best known bound with respect to messages. Our work is motivated by the following central question: can we break the (log n) time complexity barrier and the (m) message complexity barrier in the Congest model for MIS or closelyrelated symmetry breaking problems? This paper presents progress towards this question for the distributed ruling set problem in the Congest model. A -ruling set is an independent set such that every node in the graph is at most hops from a node in the independent set. We present the following results: Time Complexity: We show that we can break the O(log n) “barrier” for 2- and 3-ruling sets. We compute 3-ruling sets in O  log n log log n  rounds with high probability (whp). More generally we show that 2-ruling sets can be computed in O  log · (log n)1/2+" + log n log log n  rounds for any " > 0, which is o(log n) for a wide range of  values (e.g.,  = 2(log n)1/2−" ). These are the first 2- and 3-ruling set algorithms to improve over the O(log n)-round complexity of Luby’s algorithm in the Congest model. Message Complexity: We show an (n2) lower bound on the message complexity of computing an MIS (i.e., 1-ruling set) which holds also for randomized algorithms and present a contrast to this by showing a randomized algorithm for 2-ruling sets that, whp, uses only O(n log2 n) messages and runs in O( log n) rounds. This is the first message-efficient algorithm known for ruling sets, which has message complexity nearly linear in n (which is optimal up to a polylogarithmic factor). 
    more » « less
  5. We study local symmetry breaking problems in the Congest model, focusing on ruling set problems, which generalize the fundamental Maximal Independent Set (MIS) problem. The time (round) complexity of MIS (and ruling sets) have attracted much attention in the Local model. Indeed, recent results (Barenboim et al., FOCS 2012, Ghaffari SODA 2016) for the MIS problem have tried to break the long-standing O(log n)-round "barrier" achieved by Luby's algorithm, but these yield o(log n)-round complexity only when the maximum degree Delta is somewhat small relative to n. More importantly, these results apply only in the Local model. In fact, the best known time bound in the Congest model is still O(log n) (via Luby's algorithm) even for moderately small Delta (i.e., for Delta = Omega(log n) and Delta = o(n)). Furthermore, message complexity has been largely ignored in the context of local symmetry breaking. Luby's algorithm takes O(m) messages on m-edge graphs and this is the best known bound with respect to messages. Our work is motivated by the following central question: can we break the Theta(log n) time complexity barrier and the Theta(m) message complexity barrier in the Congest model for MIS or closely-related symmetry breaking problems? This paper presents progress towards this question for the distributed ruling set problem in the Congest model. A beta-ruling set is an independent set such that every node in the graph is at most beta hops from a node in the independent set. We present the following results: - Time Complexity: We show that we can break the O(log n) "barrier" for 2- and 3-ruling sets. We compute 3-ruling sets in O(log n/log log n) rounds with high probability (whp). More generally we show that 2-ruling sets can be computed in O(log Delta (log n)^(1/2 + epsilon) + log n/log log n) rounds for any epsilon > 0, which is o(log n) for a wide range of Delta values (e.g., Delta = 2^(log n)^(1/2-epsilon)). These are the first 2- and 3-ruling set algorithms to improve over the O(log n)-round complexity of Luby's algorithm in the Congest model. - Message Complexity: We show an Omega(n^2) lower bound on the message complexity of computing an MIS (i.e., 1-ruling set) which holds also for randomized algorithms and present a contrast to this by showing a randomized algorithm for 2-ruling sets that, whp, uses only O(n log^2 n) messages and runs in O(Delta log n) rounds. This is the first message-efficient algorithm known for ruling sets, which has message complexity nearly linear in n (which is optimal up to a polylogarithmic factor). 
    more » « less