Abstract Transcription factors are defined by their DNA-binding domains (DBDs). The binding affinities and specificities of a transcription factor to its DNA binding sites can be used by an organism to fine-tune gene regulation and so are targets for evolution. Here we investigate the evolution of GATA-type transcription factors (GATA factors) in theCaenorhabditisgenus. Based upon comparisons of their DBDs, these proteins form 13 distinct groups. This protein family experienced a burst of gene duplication in several of these groups along two short branches in the species tree, giving rise to subclades with very distinct complements of GATA factors. By comparing extant gene structures, DBD sequences, genome locations, and selection pressures we reconstructed how these duplications occurred. Although the paralogs have diverged in various ways, the literature shows that at least eight of the DBD groups bind to similar G-A-T-A DNA sequences. Thus, despite gene duplications and divergence among DBD sequences, mostCaenorhabditisGATA factors appear to have maintained similar binding preferences, which could create the opportunity for developmental system drift. We hypothesize that this limited divergence in binding specificities contributes to the apparent disconnect between the extensive genomic evolution that has occurred in this genus and the absence of significant anatomical changes.
more »
« less
A GATA factor radiation in Caenorhabditis rewired the endoderm specification network
Abstract Although similar developmental regulatory networks can produce diverse phenotypes, different networks can also produce the same phenotype. In theory, as long as development can produce an acceptable end phenotype, the details of the process could be shielded from selection, leading to the possibility of developmental system drift, where the developmental mechanisms underlying a stable phenotype continue to evolve. Many examples exist of divergent developmental genetics underlying conserved traits. However, studies that elucidate how these differences arose and how other features of development accommodated them are rarer. InCaenorhabditis elegans, six GATA-type transcription factors (GATA factors) comprise the zygotic part of the endoderm specification network. Here we show that the core of this network - five of the genes - originated within the genus during a brief but explosive radiation of this gene family and that at least three of them evolved from a single ancestral gene with at least two different spatio-temporal expression patterns. Based on analyses of their evolutionary history, gene structure, expression, and sequence, we explain how these GATA factors were integrated into this network. Our results show how gene duplication fueled the developmental system drift of the endoderm network in a phylogenetically brief period in developmentally canalized worms.
more »
« less
- Award ID(s):
- 1936674
- PAR ID:
- 10552293
- Publisher / Repository:
- bioRxiv
- Date Published:
- Format(s):
- Medium: X
- Institution:
- bioRxiv
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The constraints that govern the evolution of gene expression patterns across development remain unclear. Single-cell RNA sequencing can detail these constraints by systematically profiling homologous cells. The conserved invariant embryonic lineage ofCaenorhabditis elegansandC. briggsaemakes them ideal for comparing cell type gene expression across evolution. Measuring the spatiotemporal divergence of gene expression across embryogenesis, we find a high level of similarity in gene expression programs between species despite tens of millions of years of evolutionary divergence. Nonetheless, thousands of genes show divergence in their cell type specific expression patterns, with enrichment for functions in environmental response and behavior. Neuronal cell types show higher divergence than others such as the intestine and germline. This work identifies likely constraints on the evolution of developmental gene expression.more » « less
-
Abstract BackgroundMorphologic sex differences between males and females typically emerge after the primordial germ cell migration and gonad formation, although sex is determined at fertilization based on chromosome composition. A key debated sexual difference is the embryonic developmental rate, within vitroproduced male embryos often developing faster. However, the molecular mechanisms driving early embryonic sex differences remain unclear. ResultsTo investigate the transcriptional sex difference during early development,in vitroproduced bovine blastocysts were collected and sexed by PCR. A significant male-biased development was observed in expanded blastocysts. Ultra-low input RNA-seq analysis identified 837 DEGs, with 231 upregulated and 606 downregulated in males. Functional enrichment analysis revealed male-biased DEGs were associated with metabolic regulation, whereas female-biased DEGs were related to female gonad development, sex differentiation, inflammatory pathways, and TGF-beta signaling. Comparing X chromosome and autosome expression ratio, we found that female-biased DEGs contributed to the higher X-linked gene dosage, a phenomenon not observed in male embryos. Moreover, we identified the sex-biased transcription factors and RNA-bind proteins, including pluripotent factors such asSOX21andPRDM14, and splicing factorsFMR1andHNRNPH2. Additionally, we revealed 1,555 significantly sex-biased differential alternative splicing (AS), predominantly skipped exons, mapped to 906 genes, with 59 overlapping with DEGs enriched in metabolic and autophagy pathways. By incorporating novel isoforms from long reads sequencing, we identified 1,151 sex-biased differentially expressed isoforms (DEIs) associated with 1,017 genes. Functional analysis showed that female-biased DEIs were involved in the negative regulation of transcriptional activity, while male-biased DEIs were related to energy metabolism. Furthermore, we identified sex-biased differential exon usage inDENND1B, DIS3L2, DOCK11, IL1RAPL2,andZRSR2Y,indicating their sex-specific regulation in early embryo development. ConclusionThis study provided a comprehensive analysis of transcriptome differences between male and female bovine blastocysts, integrating sex-biased gene expression, alternative splicing, and isoform dynamics. Our findings indicate that enriched metabolism processes in male embryos may contribute to the faster developmental pace, providing insights into sex-specific regulatory mechanisms during early embryogenesis. Plain English summaryMale and female early embryos develop at different speeds, with male embryos often developing faster than female embryos. However, the reasons behind these early differences remain unclear. In this study, we examined gene activity in bovine embryos to uncover the biological factors regulating these early sex differences. We collected in vitro-produced bovine blastocysts, examined their sex, and confirmed that male embryos develop faster. By analyzing global gene activity, including alternative splicing, which allows one gene to code for multiple RNA isoforms and proteins, we found distinct gene expression profiles between male and female embryos. Male embryos showed higher activity in genes related to metabolism and cellular functions, while female embryos had increased activity in genes associated with female-specific gonad development and gene expression regulation. We also examined differences in how genes on the X chromosome were expressed. Female embryos had higher X-linked gene expression, which may contribute to sex-specific developmental regulation. Additionally, we identified sex-specific transcription factors and RNA-binding proteins that regulate early embryo development, some of which are known to control pluripotency and gene splicing. Overall, our study provides new insights into how gene activity shapes early sex differences, suggesting that enhanced metabolism in male embryos may be a key driver of their faster developmental rate. HighlightsMale embryos develop faster due to increased gene expression in metabolism pathwaysFemale embryos exhibit higher X-linked gene expression, suggesting X-dosage compensation plays a role in early developmentSex-biased alternative splicing events contribute to embryonic metabolism, autophagy, and transcriptional regulation in embryosSex-biased isoform diversity contributes to distinct developmental regulation in male and female embryosKey pluripotency factors (SOX21, PRDM14) and splicing regulators (FMR1, HNRNPH2) drive sex-specific gene expressionmore » « less
-
Brassinosteroids are plant steroid hormones that regulate diverse processes, such as cell division and cell elongation, through gene regulatory networks that vary in space and time. By using time series single-cell RNA sequencing to profile brassinosteroid-responsive gene expression specific to different cell types and developmental stages of theArabidopsisroot, we identified the elongating cortex as a site where brassinosteroids trigger a shift from proliferation to elongation associated with increased expression of cell wall–related genes. Our analysis revealedHOMEOBOX FROM ARABIDOPSIS THALIANA 7(HAT7) andGT-2-LIKE 1(GTL1) as brassinosteroid-responsive transcription factors that regulate cortex cell elongation. These results establish the cortex as a site of brassinosteroid-mediated growth and unveil a brassinosteroid signaling network regulating the transition from proliferation to elongation, which illuminates aspects of spatiotemporal hormone responses.more » « less
-
Kopp, Artyom (Ed.)Animal traits develop through the expression and action of numerous regulatory and realizator genes that comprise a gene regulatory network (GRN). For each GRN, its underlying patterns of gene expression are controlled by cis -regulatory elements (CREs) that bind activating and repressing transcription factors. These interactions drive cell-type and developmental stage-specific transcriptional activation or repression. Most GRNs remain incompletely mapped, and a major barrier to this daunting task is CRE identification. Here, we used an in silico method to identify predicted CREs (pCREs) that comprise the GRN which governs sex-specific pigmentation of Drosophila melanogaster . Through in vivo assays, we demonstrate that many pCREs activate expression in the correct cell-type and developmental stage. We employed genome editing to demonstrate that two CREs control the pupal abdomen expression of trithorax , whose function is required for the dimorphic phenotype. Surprisingly, trithorax had no detectable effect on this GRN’s key trans -regulators, but shapes the sex-specific expression of two realizator genes. Comparison of sequences orthologous to these CREs supports an evolutionary scenario where these trithorax CREs predated the origin of the dimorphic trait. Collectively, this study demonstrates how in silico approaches can shed novel insights on the GRN basis for a trait’s development and evolution.more » « less
An official website of the United States government

