skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Title: Let Students Work: Analysis of the Role of Differing Facilitation on Student Engagement in a Large Stadium-Style Lecture Hall
The classroom environment is shaped by factors such as facilitation style, curricular design, and classroom layout. These factors are all inputs into student framing of the classroom environment and affect a student’s comfort interacting within it. Promoting student discourse in active learning environments provides students the opportunity to explain their thinking and develop their understanding of natural phenomena. However, successfully implementing these practices in large lecture environments is often difficult. Undergraduate introductory chemistry lectures were investigated to identify the effects that instructional practices had on student engagement. Instructor facilitation, question level, and student interactions were analyzed and compared to provide insights into what instructional practices may promote or hinder student engagement in a large enrollment course. Overall instructors were positioning themselves as an authority on knowledge in the classroom by leading questions authoritatively like instructor-focused didactic lecturing that led to a decrease in student engagement. These results highlight the complexity of the classroom ecosystem related to student interactions and the role that facilitation plays in social and cognitive engagement.  more » « less
Award ID(s):
1915047
PAR ID:
10552416
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
Journal of Chemical Education
Volume:
100
Issue:
11
ISSN:
0021-9584
Page Range / eLocation ID:
4237 - 4248
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper presents the development and validation of the 17-item mathematics Graduate Student Instructor Observation Protocol (GSIOP) at two universities. The development of this instrument attended to some unique needs of novice undergraduate mathematics instructors while building on an existing instrument that focused on classroom interactions particularly relevant for students’ development of conceptual understanding, called the Mathematical Classroom Observation Protocol for Practices (MCOP^2). Instrument validation involved content input from mathematics education researchers and upper-level mathematics graduate student instructors at two universities, internal consistency analysis, interrater reliability analysis, and structure analyses via scree plot analysis and exploratory factor analysis. A Cronbach-Alpha level of 0.868 illustrated a viable level for internal consistency. Crosstabulation and correlations illustrate high level of interrater reliability for all but one item, and high levels across all subsections. Collaborating a scree plot with the exploratory factor analysis illustrated three critical groupings aligning with the factors from the MCOP2 (student engagement and teacher facilitation) while adding a third factor, lesson design practices. Taken collectively, these results indicate that the GSIOP measures the degree to which instructors’ and students’ actions in undergraduate mathematics classrooms align with practices recommended by the Mathematical Association of America (MAA) using a three-factor structure of teacher facilitation, student engagement, and design practices. 
    more » « less
  2. Abstract Background The first day of class helps students learn about what to expect from their instructors and courses. Messaging used by instructors, which varies in content and approach on the first day, shapes classroom social dynamics and can affect subsequent learning in a course. Prior work established the non-content Instructor Talk Framework to describe the language that instructors use to create learning environments, but little is known about the extent to which students detect those messages. In this study, we paired first day classroom observation data with results from student surveys to measure how readily students in introductory STEM courses detect non-content Instructor Talk. Results To learn more about the instructor and student first day experiences, we studied 11 introductory STEM courses at two different institutions. The classroom observation data were used to characterize course structure and use of non-content Instructor Talk. The data revealed that all instructors spent time discussing their instructional practices, building instructor/student relationships, and sharing strategies for success with their students. After class, we surveyed students about the messages their instructors shared during the first day of class and determined that the majority of students from within each course detected messaging that occurred at a higher frequency. For lower frequency messaging, we identified nuances in what students detected that may help instructors as they plan their first day of class. Conclusions For instructors who dedicate the first day of class to establishing positive learning environments, these findings provide support that students are detecting the messages. Additionally, this study highlights the importance of instructors prioritizing the messages they deem most important and giving them adequate attention to more effectively reach students. Setting a positive classroom environment on the first day may lead to long-term impacts on student motivation and course retention. These outcomes are relevant for all students, but in particular for students in introductory STEM courses which are often critical prerequisites for being in a major. 
    more » « less
  3. Symmetry is a foundational concept in inorganic chemistry, essential for understanding molecular properties and interactions. Yet, little is known about how instructors teach symmetry or what shapes their instructional and curricular choices. To investigate this, we analyzed classroom observations from fourteen inorganic chemistry instructors from various institutions, focusing on their use of student-centered practices and emphasis on symmetry content. We then conducted semi-structured interviews to explore the reasoning behind their decisions, using the Teacher-Centered Systemic Reform (TCSR) model to interpret influences from personal factors (e.g., teaching experience), teacher thinking (e.g., beliefs about teaching and learning), and contextual factors (e.g., classroom layout). Minute-by-minute analyses of teaching revealed four instructional profiles (student-centered, high-interactive, low-interactive, and instructor-centered) and four content profiles, ranging from an emphasis on symmetry fundamentals (e.g., symmetry elements and operations, point group assignment) to symmetry applications (e.g., spectroscopy, molecular orbitals, character tables). Three themes emerged: (1) instructional approaches and content emphasis vary substantially across instructors; (2) more student-centered instructors tend to focus on foundational symmetry concepts and skills, whereas more instructor-centered instructors tend to prioritize advanced applications; and (3) instructors’ beliefs and prior experiences, more than personal and contextual factors, drive instructional decisions for teaching symmetry. 
    more » « less
  4. This research paper investigates how classroom observation tools can be effectively combined to promote engagement in STEM education. Specifically, it explores the integration of the Classroom Observation Protocol for Undergraduate STEM (COPUS) and a culturally responsive Classroom Observation Instrument (COI) to evaluate and improve teaching practices. COPUS, developed by Smith et al. [21], captures instructional dynamics and student-faculty interactions, while the Classroom Observation Instrument COI, created by Dr. Jennifer G. Cromley and the University of Illinois Urbana-Champaign (UIUC) Developing Equity-Minded Engineering Practitioners (DEEP) research team [6], focuses on observing and assessing culturally responsive-related instructional practices. At Morgan State University (MSU), a Historically Black University (HBCU), coders formally trained by the UIUC DEEP team used both tools to analyze classroom recordings of faculty who had undergone professional development in engaging pedagogy. Findings indicate measurable improvements and balanced engagement in the classroom. This fusion of COPUS and COI tools offers a replicable framework for enhancing inclusive STEM instruction and cultivating more equitable learning environments. 
    more » « less
  5. Cook, Sam; Katz, Brian; Moore-Russo, Deborah (Ed.)
    We aimed to get a better understanding of participants’ (eight foundational math course [FMC] coordinators’) teaching approaches. In the first year of this grant project, we primarily gathered data (through surveys, self-reflections, and class observations) on these individuals as instructors. These data were compiled into narrative summaries for each participant and analyzed and compared. We discuss our findings from this analysis, using the instructional triangle as a framework, and particularly focusing on instructor-student interactions. This project aims to develop an understanding of what is needed to support instructional change in FMCs by evaluating how math-specific professional development (PD) cycles affect FMC coordinators’ teaching practices and perspectives. We seek audience feedback on potential next steps towards fostering effective instructor-student interactions and future PD cycles. 
    more » « less