Abstract In many cases, understanding species’ responses to climate change requires understanding variation among individuals in response to such change. For species with strong symbiotic relationships, such as many coral reef species, genetic variation in symbiont responses to temperature may affect the response to increased ocean temperatures. To assess variation among symbiont genotypes, we examined the population dynamics and physiological responses of genotypes ofBreviolum antillogorgiumin response to increased temperature. We found broad temperature tolerance across genotypes, with all genotypes showing positive growth at 26, 30, and 32°C. Genotypes differed in the magnitude of the response of growth rate and carrying capacity to increasing temperature, suggesting that natural selection could favor different genotypes at different temperatures. However, the historical temperature at which genotypes were reared (26 or 30°C) was not a good predictor of contemporary temperature response. We found increased photosynthetic rates and decreased respiration rates with increasing contemporary temperature, and differences in physiology among genotypes, but found no significant differences in the response of these traits to temperature among genotypes. In species with such broad thermal tolerance, selection experiments on symbionts outside of the host may not yield results sufficient for evolutionary rescue from climate change.
more »
« less
Variation in thermotolerance of photosystem II energy trapping, intersystem electron transport, and photosystem I electron acceptor reduction for diverse cotton genotypes
Cotton breeding programs have focused on agronomically-desirable traits. Without targeted selection for tolerance to high temperature extremes, cotton will likely be more vulnerable to environment-induced yield loss. Recently-developed methods that couple chlorophyll fluorescence induction measurements with temperature response experiments could be used to identify genotypic variation in photosynthetic thermotolerance of specific photosynthetic processes for field-grown plants. It was hypothesized that diverse cotton genotypes would differ significantly in photosynthetic thermotolerance, specific thylakoid processes would exhibit differential sensitivities to high temperature, and that the most heat tolerant process would exhibit substantial genotypic variation in thermotolerance plasticity. A two-year field experiment was conducted at Tifton and Athens, Georgia, USA. Experiments included 10 genotypes in 2020 and 11 in 2021. Photosynthetic thermotolerance for field-collected leaf samples was assessed by determining the high temperature threshold resulting in a 15% decline in photosynthetic efficiency (T15) for energy trapping by photosystem II (ΦPo), intersystem electron transport (ΦEo), and photosystem I end electron acceptor reduction (ΦRo). Significant genotypic variation in photosynthetic thermotolerance was observed, but the response was dependent on location and photosynthetic parameter assessed. ΦEo was substantially more heat sensitive than ΦPo or ΦRo. Significant genotypic variation in thermotolerance plasticity of ΦEo was also observed. Identifying the weakest link in photosynthetic tolerance to high temperature will facilitate future selection efforts by focusing on the most heat-susceptible processes. Given the genotypic differences in environmental plasticity observed here, future research should evaluate genotypic variation in acclimation potential in controlled environments.
more »
« less
- Award ID(s):
- 1934481
- PAR ID:
- 10552574
- Publisher / Repository:
- Elsevier Masson SAS.
- Date Published:
- Journal Name:
- Plant physiology and biochemistry
- ISSN:
- 1873-2690
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Gene expression can be highly plastic in response to environmental variation. However, we know little about how expression plasticity is shaped by natural selection and evolves in wild and domesticated species. We used genotypic selection analysis to characterize selection on drought-induced plasticity of over 7,500 leaf transcripts of 118 rice accessions (genotypes) from different environmental conditions grown in a field experiment. Gene expression plasticity was neutral for most gradually plastic transcripts, but transcripts with discrete patterns of expression showed stronger selection on expression plasticity. Whether plasticity was adaptive and co-gradient or maladaptive and counter-gradient varied among varietal groups. No transcripts that experienced selection for plasticity across environments showed selection against plasticity within environments, indicating a lack of evidence for costs of adaptive plasticity that may constrain its evolution. Selection on expression plasticity was influenced by degree of plasticity, transcript length and gene body methylation. We observed positive selection on plasticity of co-expression modules containing transcripts involved in photosynthesis, translation and responsiveness to abiotic stress. Taken together, these results indicate that patterns of selection on expression plasticity were context-dependent and likely associated with environmental conditions of varietal groups, but that the evolution of adaptive plasticity would likely not be constrained by opposing patterns of selection on plasticity within compared to across environments. These results offer a genome-wide view of patterns of selection and ecological constraints on gene expression plasticity and provide insights into the interplay between plastic and evolutionary responses to drought at the molecular level.more » « less
-
In photosynthetic electron transport, large multiprotein complexes are connected by small diffusible electron carriers, the mobility of which is challenged by macromolecular crowding. For thylakoid membranes of higher plants, a long-standing question has been which of the two mobile electron carriers, plastoquinone or plastocyanin, mediates electron transport from stacked grana thylakoids where photosystem II (PSII) is localized to distant unstacked regions of the thylakoids that harbor PSI. Here, we confirm that plastocyanin is the long-range electron carrier by employing mutants with different grana diameters. Furthermore, our results explain why higher plants have a narrow range of grana diameters since a larger diffusion distance for plastocyanin would jeopardize the efficiency of electron transport. In the light of recent findings that the lumen of thylakoids, which forms the diffusion space of plastocyanin, undergoes dynamic swelling/shrinkage, this study demonstrates that plastocyanin diffusion is a crucial regulatory element of plant photosynthetic electron transport.more » « less
-
Harnessing the power of photosynthesis to catalyze novel light-driven redox chemistry requires a way to intercept electron flow directly from the photosynthetic electron transport chain (PETC). As a proof of concept, an in vivo fusion of photosystem I (PSI) and algal hydrogenase was created by insertion of the HydA sequence into the PsaC subunit. The PSI and hydrogenase portions are co-assembled and active in vivo , effectively creating a new photosystem. Cells expressing only the PSI-hydrogenase chimera make hydrogen at high rates in a light-dependent fashion for several days. In these engineered cells, photosynthetic electron flow is directed away from CO 2 fixation and towards proton reduction, demonstrating the possibility of driving novel redox chemistries using electrons from water splitting and the photosynthetic electron transport chain.more » « less
-
Muller, Bertrand (Ed.)Abstract Maintaining crop productivity is challenging as population growth, climate change, and increasing fertilizer costs necessitate expanding crop production to poorer lands whilst reducing inputs. Enhancing crops’ nutrient use efficiency is thus an important goal, but requires a better understanding of related traits and their genetic basis. We investigated variation in low nutrient stress tolerance in a diverse panel of cultivated sunflower genotypes grown under high and low nutrient conditions, assessing relative growth rate (RGR) as performance. We assessed variation in traits related to nitrogen utilization efficiency (NUtE), mass allocation, and leaf elemental content. Across genotypes, nutrient limitation generally reduced RGR. Moreover, there was a negative correlation between vigor (RGR in control) and decline in RGR in response to stress. Given this trade-off, we focused on nutrient stress tolerance independent of vigor. This tolerance metric correlated with the change in NUtE, plasticity for a suite of morphological traits, and leaf element content. Genome-wide associations revealed regions associated with variation and plasticity in multiple traits, including two regions with seemingly additive effects on NUtE change. Our results demonstrate potential avenues for improving sunflower nutrient stress tolerance independent of vigor, and highlight specific traits and genomic regions that could play a role in enhancing tolerance.more » « less
An official website of the United States government

