skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: Defogger: A Visual Analysis Approach for Data Exploration of Sensitive Data Protected by Differential Privacy
Differential privacy ensures the security of individual privacy but poses challenges to data exploration processes because the limited privacy budget incapacitates the flexibility of exploration and the noisy feedback of data requests leads to confusing uncertainty. In this study, we take the lead in describing corresponding exploration scenarios, including underlying requirements and available exploration strategies. To facilitate practical applications, we propose a visual analysis approach to the formulation of exploration strategies. Our approach applies a reinforcement learning model to provide diverse suggestions for exploration strategies according to the exploration intent of users. A novel visual design for representing uncertainty in correlation patterns is integrated into our prototype system to support the proposed approach. Finally, we implemented a user study and two case studies. The results of these studies verified that our approach can help develop strategies that satisfy the exploration intent of users.  more » « less
Award ID(s):
2224066 2350036
PAR ID:
10552817
Author(s) / Creator(s):
; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE Transactions on Visualization and Computer Graphics
ISSN:
1077-2626
Page Range / eLocation ID:
1 to 11
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Open data sets that contain personal information are susceptible to adversarial attacks even when anonymized. By performing low-cost joins on multiple datasets with shared attributes, malicious users of open data portals might get access to information that violates individuals’ privacy. However, open data sets are primarily published using a release-and-forget model, whereby data owners and custodians have little to no cognizance of these privacy risks. We address this critical gap by developing a visual analytic solution that enables data defenders to gain awareness about the disclosure risks in local, joinable data neighborhoods. The solution is derived through a design study with data privacy researchers, where we initially play the role of a red team and engage in an ethical data hacking exercise based on privacy attack scenarios. We use this problem and domain characterization to develop a set of visual analytic interventions as a defense mechanism and realize them in PRIVEE, a visual risk inspection workflow that acts as a proactive monitor for data defenders. PRIVEE uses a combination of risk scores and associated interactive visualizations to let data defenders explore vulnerable joins and interpret risks at multiple levels of data granularity. We demonstrate how PRIVEE can help emulate the attack strategies and diagnose disclosure risks through two case studies with data privacy experts. 
    more » « less
  2. Recent studies have shown that users of visual analytics tools can have difficulty distinguishing robust findings in the data from statistical noise, but the true extent of this problem is likely dependent on both the incentive structure motivating their decisions, and the ways that uncertainty and variability are (or are not) represented in visualisations. In this work, we perform a crowd-sourced study measuring decision-making quality in visual analytics, testing both an explicit structure of incentives designed to reward cautious decision-making as well as a variety of designs for communicating uncertainty. We find that, while participants are unable to perfectly control for false discoveries as well as idealised statistical models such as the Benjamini-Hochberg, certain forms of uncertainty visualisations can improve the quality of participants’ decisions and lead to fewer false discoveries than not correcting for multiple comparisons. We conclude with a call for researchers to further explore visual analytics decision quality under different decision-making contexts, and for designers to directly present uncertainty and reliability information to users of visual analytics tools. The supplementary materials are available at: https://osf.io/xtsfz/. 
    more » « less
  3. Fitness trackers are undoubtedly gaining in popularity. As fitness-related data are persistently captured, stored, and processed by these devices, the need to ensure users’ privacy is becoming increasingly urgent. In this paper, we apply a data-driven approach to the development of privacy-setting recommendations for fitness devices. We first present a fitness data privacy model that we defined to represent users’ privacy preferences in a way that is unambiguous, compliant with the European Union’s General Data Protection Regulation (GDPR), and able to represent both the user and the third party preferences. Our crowdsourced dataset is collected using current scenarios in the fitness domain and used to identify privacy profiles by applying machine learning techniques. We then examine different personal tracking data and user traits which can potentially drive the recommendation of privacy profiles to the users. Finally, a set of privacy-setting recommendation strategies with different guidance styles are designed based on the resulting profiles. Interestingly, our results show several semantic relationships among users’ traits, characteristics, and attitudes that are useful in providing privacy recommendations. Even though several works exist on privacy preference modeling, this paper makes a contribution in modeling privacy preferences for data sharing and processing in the IoT and fitness domain, with specific attention to GDPR compliance. Moreover, the identification of well-identified clusters of preferences and predictors of such clusters is a relevant contribution for user profiling and for the design of interactive recommendation strategies that aim to balance users’ control over their privacy permissions and the simplicity of setting these permissions. 
    more » « less
  4. null (Ed.)
    To account for privacy perceptions and preferences in user models and develop personalized privacy systems, we need to understand how users make privacy decisions in various contexts. Existing studies of privacy perceptions and behavior focus on overall tendencies toward privacy, but few have examined the context-specific factors in privacy decision making. We conducted a survey on Mechanical Turk (N=401) based on the theory of planned behavior (TPB) to measure the way users’ perceptions of privacy factors and intent to disclose information are affected by three situational factors embodied hypothetical scenarios: information type, recipients’ role, and trust source. Results showed a positive relationship between subjective norms and perceived behavioral control, and between each of these and situational privacy attitude; all three constructs are significantly positively associated with intent to disclose. These findings also suggest that, situational factors predict participants’ privacy decisions through their influence on the TPB constructs. 
    more » « less
  5. People who are blind share their images and videos with companies that provide visual assistance technologies (VATs) to gain access to information about their surroundings. A challenge is that people who are blind cannot independently validate the content of the images and videos before they share them, and their visual data commonly contains private content. We examine privacy concerns for blind people who share personal visual data with VAT companies that provide descriptions authored by humans or artifcial intelligence (AI) . We frst interviewed 18 people who are blind about their perceptions of privacy when using both types of VATs. Then we asked the participants to rate 21 types of image content according to their level of privacy concern if the information was shared knowingly versus unknowingly with human- or AI-powered VATs. Finally, we analyzed what information VAT companies communicate to users about their collection and processing of users’ personal visual data through their privacy policies. Our fndings have implications for the development of VATs that safeguard blind users’ visual privacy, and our methods may be useful for other camera-based technology companies and their users. 
    more » « less