skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Brief Announcement: Relations Between Space-Bounded and Adaptive Massively Parallel Computations
In this work, we study the class of problems solvable by (deterministic) Adaptive Massively Parallel Computations in constant rounds from a computational complexity theory perspective. A language L is in the class AMPC⁰ if, for every ε > 0, there is a deterministic AMPC algorithm running in constant rounds with a polynomial number of processors, where the local memory of each machine s = O(N^ε). We prove that the space-bounded complexity class ReachUL is a proper subclass of AMPC⁰. The complexity class ReachUL lies between the well-known space-bounded complexity classes Deterministic Logspace (DLOG) and Nondeterministic Logspace (NLOG). In contrast, we establish that it is unlikely that PSPACE admits AMPC algorithms, even with polynomially many rounds. We also establish that showing PSPACE is a subclass of nonuniform-AMPC with polynomially many rounds leads to a significant separation result in complexity theory, namely PSPACE is a proper subclass of EXP^{Σ₂^{𝖯}}.  more » « less
Award ID(s):
2130608 2130536
PAR ID:
10553047
Author(s) / Creator(s):
; ;
Editor(s):
Oshman, Rotem
Publisher / Repository:
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
Date Published:
Volume:
281
ISSN:
1868-8969
ISBN:
978-3-95977-301-0
Page Range / eLocation ID:
281-281
Subject(s) / Keyword(s):
Massively Parallel Computation AMPC Complexity Classes LogSpace NL PSPACE Computing methodologies → Massively parallel algorithms Theory of computation → Complexity classes
Format(s):
Medium: X Size: 7 pages; 705794 bytes Other: application/pdf
Size(s):
7 pages 705794 bytes
Right(s):
Creative Commons Attribution 4.0 International license; info:eu-repo/semantics/openAccess
Sponsoring Org:
National Science Foundation
More Like this
  1. Meka, Raghu (Ed.)
    In recent years, quantum computing involving physical systems with continuous degrees of freedom, such as the bosonic quantum states of light, has attracted significant interest. However, a well-defined quantum complexity theory for these bosonic computations over infinite-dimensional Hilbert spaces is missing. In this work, we lay the foundations for such a research program. We introduce natural complexity classes and problems based on bosonic generalizations of BQP, the local Hamiltonian problem, and QMA. We uncover several relationships and subtle differences between standard Boolean classical and discrete-variable quantum complexity classes, and identify outstanding open problems. Our main contributions include the following: 1) Bosonic computations. We show that the power of Gaussian computations up to logspace reductions is equivalent to bounded-error quantum logspace (BQL, characterized by the problem of inverting well-conditioned matrices). More generally, we define classes of continuous-variable quantum polynomial time computations with a bounded probability of error (CVBQP) based on gates generated by polynomial bosonic Hamiltonians and particle-number measurements. Due to the infinite-dimensional Hilbert space, it is not a priori clear whether a decidable upper bound can be obtained for these classes. We identify complete problems for these classes, and we demonstrate a BQP lower bound and an EXPSPACE upper bound by proving bounds on the average energy throughout the computation. We further show that the problem of computing expectation values of polynomial bosonic observables at the output of bosonic quantum circuits using Gaussian and cubic phase gates is in PSPACE. 2) Bosonic ground energy problems. We prove that the problem of deciding whether the spectrum of a bosonic Hamiltonian is bounded from below is co-NP-hard. Furthermore, we show that the problem of finding the minimum energy of a bosonic Hamiltonian critically depends on the non-Gaussian stellar rank of the family of energy-constrained states one optimizes over: for zero stellar rank, i.e., optimizing over Gaussian states, it is NP-complete; for polynomially-bounded stellar rank, it is in QMA; for unbounded stellar rank, it is RE-hard, i.e., undecidable. 
    more » « less
  2. We consider variants of the Minimum Circuit Size Problem MCSP, where the goal is to minimize the size of oracle circuits computing a given function. When the oracle is QBF, the resulting problem MCSP[superscript]QBF is known to be complete for PSPACE under ZPP reductions. We show that it is not complete under logspace reductions, and indeed it is not even hard for TC[superscript]0 under uniform AC[superscript]0 reductions. We obtain a variety of consequences that follow if oracle versions of MCSP are hard for various complexity classes under different types of reductions. We also prove analogous results for the problem of determining the resource-bounded Kolmogorov complexity of strings, for certain types of Kolmogorov complexity measures. 
    more » « less
  3. Let L be a language that can be decided in linear space and let ϵ>0 be any constant. Let A be the exponential hardness assumption that for every n, membership in L for inputs of length n cannot be decided by circuits of size smaller than 2ϵn. We prove that for every function f:{0,1}∗→{0,1}, computable by a randomized logspace algorithm R, there exists a deterministic logspace algorithm D (attempting to compute f), such that on every input x of length n, the algorithm D outputs one of the following:1)The correct value f(x).2)The string: “I am unable to compute f(x) because the hardness assumption A is false”, followed by a (provenly correct) circuit of size smaller than 2ϵn′ for membership in L for inputs of length n′, for some n′=Θ(logn); that is, a circuit that refutes A. Moreover, D is explicitly constructed, given R.We note that previous works on the hardness-versus-randomness paradigm give derandomized algorithms that rely blindly on the hardness assumption. If the hardness assumption is false, the algorithms may output incorrect values, and thus a user cannot trust that an output given by the algorithm is correct. Instead, our algorithm D verifies the computation so that it never outputs an incorrect value. Thus, if D outputs a value for f(x), that value is certified to be correct. Moreover, if D does not output a value for f(x), it alerts that the hardness assumption was found to be false, and refutes the assumption.Our next result is a universal derandomizer for BPL (the class of problems solvable by bounded-error randomized logspace algorithms) 1 : We give a deterministic algorithm U that takes as an input a randomized logspace algorithm R and an input x and simulates the computation of R on x, deteriministically. Under the widely believed assumption BPL=L, the space ... 
    more » « less
  4. Oh, A; Naumann, T; Globerson, A; Saenko, K; Hardt, M; Levine, S (Ed.)
    We study the problem of agnostic PAC reinforcement learning (RL): given a policy class Pi, how many rounds of interaction with an unknown MDP (with a potentially large state and action space) are required to learn an epsilon-suboptimal policy with respect to Pi? Towards that end, we introduce a new complexity measure, called the spanning capacity, that depends solely on the set Pi and is independent of the MDP dynamics. With a generative model, we show that the spanning capacity characterizes PAC learnability for every policy class Pi. However, for online RL, the situation is more subtle. We show there exists a policy class Pi with a bounded spanning capacity that requires a superpolynomial number of samples to learn. This reveals a surprising separation for agnostic learnability between generative access and online access models (as well as between deterministic/stochastic MDPs under online access). On the positive side, we identify an additional sunflower structure which in conjunction with bounded spanning capacity enables statistically efficient online RL via a new algorithm called POPLER, which takes inspiration from classical importance sampling methods as well as recent developments for reachable-state identification and policy evaluation in reward-free exploration. 
    more » « less
  5. null (Ed.)
    We study the communication cost (or message complexity) of fundamental distributed symmetry breaking problems, namely, coloring and MIS. While significant progress has been made in understanding and improving the running time of such problems, much less is known about the message complexity of these problems. In fact, all known algorithms need at least Ω(m) communication for these problems, where m is the number of edges in the graph. We addressthe following question in this paper: can we solve problems such as coloring and MIS using sublinear, i.e., o(m) communication, and if sounder what conditions? In a classical result, Awerbuch, Goldreich, Peleg, and Vainish [JACM 1990] showed that fundamental global problems such asbroadcast and spanning tree construction require at least o(m) messages in the KT-1 Congest model (i.e., Congest model in which nodes have initial knowledge of the neighbors' ID's) when algorithms are restricted to be comparison-based (i.e., algorithms inwhich node ID's can only be compared). Thirty five years after this result, King, Kutten, and Thorup [PODC 2015] showed that onecan solve the above problems using Õ(n) messages (n is the number of nodes in the graph) in Õ(n) rounds in the KT-1 Congest model if non-comparison-based algorithms are permitted. An important implication of this result is that one can use the synchronous nature of the KT-1 Congest model, using silence to convey information,and solve any graph problem using non-comparison-based algorithms with Õ(n) messages, but this takes an exponential number of rounds. In the asynchronous model, even this is not possible. In contrast, much less is known about the message complexity of local symmetry breaking problems such as coloring and MIS. Our paper fills this gap by presenting the following results. Lower bounds: In the KT-1 CONGEST model, we show that any comparison-based algorithm, even a randomized Monte Carlo algorithm with constant success probability, requires Ω(n 2) messages in the worst case to solve either (△ + 1)-coloring or MIS, regardless of the number of rounds. We also show that Ω(n) is a lower bound on the number ofmessages for any (△ + 1)-coloring or MIS algorithm, even non-comparison-based, and even with nodes having initial knowledge of up to a constant radius. Upper bounds: In the KT-1 CONGEST model, we present the following randomized non-comparison-based algorithms for coloring that, with high probability, use o(m) messages and run in polynomially many rounds.(a) A (△ + 1)-coloring algorithm that uses Õ(n1.5) messages, while running in Õ(D + √ n) rounds, where D is the graph diameter. Our result also implies an asynchronous algorithm for (△ + 1)-coloring with the same message bound but running in Õ(n) rounds. (b) For any constantε > 0, a (1+ε)△-coloring algorithm that uses Õ(n/ε 2 ) messages, while running in Õ(n) rounds. If we increase our input knowledge slightly to radius 2, i.e.,in the KT-2 CONGEST model, we obtain:(c) A randomized comparison-based MIS algorithm that uses Õ(n 1.5) messages. while running in Õ( √n) rounds. While our lower bound results can be viewed as counterparts to the classical result of Awerbuch, Goldreich, Peleg, and Vainish [JACM 90], but for local problems, our algorithms are the first-known algorithms for coloring and MIS that take o(m) messages and run in polynomially many rounds. 
    more » « less