skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on September 16, 2025

Title: Improved Streaming Algorithm for the Klee’s Measure Problem and Generalizations
Estimating the size of the union of a stream of sets S₁, S₂, …, S_M where each set is a subset of a known universe Ω is a fundamental problem in data streaming. This problem naturally generalizes the well-studied 𝖥₀ estimation problem in the streaming literature, where each set contains a single element from the universe. We consider the general case when the sets S_i can be succinctly represented and allow efficient membership, cardinality, and sampling queries (called a Delphic family of sets). A notable example in this framework is the Klee’s Measure Problem (KMP), where every set S_i is an axis-parallel rectangle in d-dimensional spaces (Ω = [Δ]^d where [Δ] := {1, … ,Δ} and Δ ∈ ℕ). Recently, Meel, Chakraborty, and Vinodchandran (PODS-21, PODS-22) designed a streaming algorithm for (ε,δ)-estimation of the size of the union of set streams over Delphic family with space and update time complexity O((log³|Ω|)/ε² ⋅ log 1/δ) and Õ((log⁴|Ω|)/ε² ⋅ log 1/(δ)), respectively. This work presents a new, sampling-based algorithm for estimating the size of the union of Delphic sets that has space and update time complexity Õ((log²|Ω|)/ε² ⋅ log 1/(δ)). This improves the space complexity bound by a log|Ω| factor and update time complexity bound by a log² |Ω| factor. A critical question is whether quadratic dependence of log|Ω| on space and update time complexities is necessary. Specifically, can we design a streaming algorithm for estimating the size of the union of sets over Delphic family with space and complexity linear in log|Ω| and update time poly(log|Ω|)? While this appears technically challenging, we show that establishing a lower bound of ω(log|Ω|) with poly(log|Ω|) update time is beyond the reach of current techniques. Specifically, we show that under certain hard-to-prove computational complexity hypothesis, there is a streaming algorithm for the problem with optimal space complexity O(log|Ω|) and update time poly(log(|Ω|)). Thus, establishing a space lower bound of ω(log|Ω|) will lead to break-through complexity class separation results.  more » « less
Award ID(s):
2130608
PAR ID:
10553075
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Kumar, Amit; Ron-Zewi, Noga
Publisher / Repository:
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
Date Published:
Volume:
317
ISSN:
1868-8969
ISBN:
978-3-95977-348-5
Page Range / eLocation ID:
317-317
Subject(s) / Keyword(s):
Sampling Streaming Klee’s Measure Problem Theory of computation → Sketching and sampling
Format(s):
Medium: X Size: 21 pages; 930445 bytes Other: application/pdf
Size(s):
21 pages 930445 bytes
Right(s):
Creative Commons Attribution 4.0 International license; info:eu-repo/semantics/openAccess
Sponsoring Org:
National Science Foundation
More Like this
  1. Given a family of sets (S1, S2,... SM) over a universe Ω, estimating the size of their union in the data streaming model is a fundamental computational problem with a wide variety of applications. The holy grail in the field of streaming is to seek design of algorithms that achieve (ε, δ)-approximation with poly(log |Ω|, ε-1, log δ-1) space and update time complexity. Earlier investigations achieve algorithms with desired space and update time complexity for restricted cases such as singletons (Distinct Elements problem), one-dimensional ranges, arithmetic progressions, and sub-cubes. However, techniques used in these works fail for many other simple structured sets. A prominent example is that of Klee's Measure Problem (KMP), wherein every set Si is represented by an axis-parallel rectangle in d-dimensional spaces. Despite extensive prior work, the best-known streaming algorithms for many of these cases depend on the size of the stream, and therefore the problem of whether there exists a streaming algorithm for estimations of size of the union of sets with poly(log |Ω|, ε-1, log δ-1) space and update time complexity has remained open. In this work, we focus on certain general families of sets called Delphic families (which allows efficient membership, sampling, and cardinality queries). Such families of sets capture several well-known problems, including KMP, test coverage, and hypervolume estimation. The primary contribution of our work is to resolve the above-mentioned open problem for streams over Delphic families. In particular, we design the first streaming algorithm for estimating |⋃i=1M Si| with poly(log |Ω|, ε-1, log δ-1) space and update time complexity (independent of M, the length of the stream) when each Si is a member from a Delphic family of sets. We further generalize our results to larger families of sets, called approximate-Delphic families, for which the size of a set can be known approximately but not exactly. Our results resolve two of the open problems listed in Meel, Vinodchandran, Chakraborty (PODS-21). 
    more » « less
  2. Guruswami, Venkatesan (Ed.)
    Inspired by the classic problem of Boolean function monotonicity testing, we investigate the testability of other well-studied properties of combinatorial finite set systems, specifically intersecting families and union-closed families. A function f: {0,1}ⁿ → {0,1} is intersecting (respectively, union-closed) if its set of satisfying assignments corresponds to an intersecting family (respectively, a union-closed family) of subsets of [n]. Our main results are that - in sharp contrast with the property of being a monotone set system - the property of being an intersecting set system, and the property of being a union-closed set system, both turn out to be information-theoretically difficult to test. We show that: - For ε ≥ Ω(1/√n), any non-adaptive two-sided ε-tester for intersectingness must make 2^{Ω(n^{1/4}/√{ε})} queries. We also give a 2^{Ω(√{n log(1/ε)})}-query lower bound for non-adaptive one-sided ε-testers for intersectingness. - For ε ≥ 1/2^{Ω(n^{0.49})}, any non-adaptive two-sided ε-tester for union-closedness must make n^{Ω(log(1/ε))} queries. Thus, neither intersectingness nor union-closedness shares the poly(n,1/ε)-query non-adaptive testability that is enjoyed by monotonicity. To complement our lower bounds, we also give a simple poly(n^{√{nlog(1/ε)}},1/ε)-query, one-sided, non-adaptive algorithm for ε-testing each of these properties (intersectingness and union-closedness). We thus achieve nearly tight upper and lower bounds for two-sided testing of intersectingness when ε = Θ(1/√n), and for one-sided testing of intersectingness when ε = Θ(1). 
    more » « less
  3. Etessami, Kousha ; Feige, Uriel ; Puppis, Gabriele (Ed.)
    We study the time complexity of the discrete k-center problem and related (exact) geometric set cover problems when k or the size of the cover is small. We obtain a plethora of new results: - We give the first subquadratic algorithm for rectilinear discrete 3-center in 2D, running in Õ(n^{3/2}) time. - We prove a lower bound of Ω(n^{4/3-δ}) for rectilinear discrete 3-center in 4D, for any constant δ > 0, under a standard hypothesis about triangle detection in sparse graphs. - Given n points and n weighted axis-aligned unit squares in 2D, we give the first subquadratic algorithm for finding a minimum-weight cover of the points by 3 unit squares, running in Õ(n^{8/5}) time. We also prove a lower bound of Ω(n^{3/2-δ}) for the same problem in 2D, under the well-known APSP Hypothesis. For arbitrary axis-aligned rectangles in 2D, our upper bound is Õ(n^{7/4}). - We prove a lower bound of Ω(n^{2-δ}) for Euclidean discrete 2-center in 13D, under the Hyperclique Hypothesis. This lower bound nearly matches the straightforward upper bound of Õ(n^ω), if the matrix multiplication exponent ω is equal to 2. - We similarly prove an Ω(n^{k-δ}) lower bound for Euclidean discrete k-center in O(k) dimensions for any constant k ≥ 3, under the Hyperclique Hypothesis. This lower bound again nearly matches known upper bounds if ω = 2. - We also prove an Ω(n^{2-δ}) lower bound for the problem of finding 2 boxes to cover the largest number of points, given n points and n boxes in 12D . This matches the straightforward near-quadratic upper bound. 
    more » « less
  4. A streaming algorithm is considered to be adversarially robust if it provides correct outputs with high probability even when the stream updates are chosen by an adversary who may observe and react to the past outputs of the algorithm. We grow the burgeoning body of work on such algorithms in a new direction by studying robust algorithms for the problem of maintaining a valid vertex coloring of an n-vertex graph given as a stream of edges. Following standard practice, we focus on graphs with maximum degree at most Δ and aim for colorings using a small number f(Δ) of colors. A recent breakthrough (Assadi, Chen, and Khanna; SODA 2019) shows that in the standard, non-robust, streaming setting, (Δ+1)-colorings can be obtained while using only Õ(n) space. Here, we prove that an adversarially robust algorithm running under a similar space bound must spend almost Ω(Δ²) colors and that robust O(Δ)-coloring requires a linear amount of space, namely Ω(nΔ). We in fact obtain a more general lower bound, trading off the space usage against the number of colors used. From a complexity-theoretic standpoint, these lower bounds provide (i) the first significant separation between adversarially robust algorithms and ordinary randomized algorithms for a natural problem on insertion-only streams and (ii) the first significant separation between randomized and deterministic coloring algorithms for graph streams, since deterministic streaming algorithms are automatically robust. We complement our lower bounds with a suite of positive results, giving adversarially robust coloring algorithms using sublinear space. In particular, we can maintain an O(Δ²)-coloring using Õ(n √Δ) space and an O(Δ³)-coloring using Õ(n) space. 
    more » « less
  5. Given a metric space ℳ = (X,δ), a weighted graph G over X is a metric t-spanner of ℳ if for every u,v ∈ X, δ(u,v) ≤ δ_G(u,v) ≤ t⋅ δ(u,v), where δ_G is the shortest path metric in G. In this paper, we construct spanners for finite sets in metric spaces in the online setting. Here, we are given a sequence of points (s₁, …, s_n), where the points are presented one at a time (i.e., after i steps, we have seen S_i = {s₁, … , s_i}). The algorithm is allowed to add edges to the spanner when a new point arrives, however, it is not allowed to remove any edge from the spanner. The goal is to maintain a t-spanner G_i for S_i for all i, while minimizing the number of edges, and their total weight. Under the L₂-norm in ℝ^d for arbitrary constant d ∈ ℕ, we present an online (1+ε)-spanner algorithm with competitive ratio O_d(ε^{-d} log n), improving the previous bound of O_d(ε^{-(d+1)}log n). Moreover, the spanner maintained by the algorithm has O_d(ε^{1-d}log ε^{-1})⋅ n edges, almost matching the (offline) optimal bound of O_d(ε^{1-d})⋅ n. In the plane, a tighter analysis of the same algorithm provides an almost quadratic improvement of the competitive ratio to O(ε^{-3/2}logε^{-1}log n), by comparing the online spanner with an instance-optimal spanner directly, bypassing the comparison to an MST (i.e., lightness). As a counterpart, we design a sequence of points that yields a Ω_d(ε^{-d}) lower bound for the competitive ratio for online (1+ε)-spanner algorithms in ℝ^d under the L₁-norm. Then we turn our attention to online spanners in general metrics. Note that, it is not possible to obtain a spanner with stretch less than 3 with a subquadratic number of edges, even in the offline setting, for general metrics. We analyze an online version of the celebrated greedy spanner algorithm, dubbed ordered greedy. With stretch factor t = (2k-1)(1+ε) for k ≥ 2 and ε ∈ (0,1), we show that it maintains a spanner with O(ε^{-1}logε^{-1})⋅ n^{1+1/k} edges and O(ε^{-1}n^{1/k}log² n) lightness for a sequence of n points in a metric space. We show that these bounds cannot be significantly improved, by introducing an instance that achieves an Ω(1/k⋅ n^{1/k}) competitive ratio on both sparsity and lightness. Furthermore, we establish the trade-off among stretch, number of edges and lightness for points in ultrametrics, showing that one can maintain a (2+ε)-spanner for ultrametrics with O(ε^{-1}logε^{-1})⋅ n edges and O(ε^{-2}) lightness. 
    more » « less