skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Subwavelength-modulated silicon photonics for low-energy free-electron-photon interactions
We investigate silicon waveguides with subwavelength-scale modulation for applications in free-electron-photon interactions. The modulation enables velocity matching and efficient interactions between low-energy electrons and co-propagating photons. Specifically, we design a subwavelength-grating (SWG) waveguide for interactions between 23-keV free electrons and ≈1500-nm photons. The SWG waveguide and electron system exhibit a coupling coefficient of |gQu| = 0.23, and as we corroborate with time-domain, particle-in-cell simulations, the system operates as a backward-wave oscillator. Overall, our results show that modulated waveguides could open the door to strong, extended interactions between photons and low-energy (10-keV-scale) electrons, like those typically present in scanning electron microscopes. Additionally, our SWG waveguide design suggests that periodic waveguides could offer intriguing dispersion engineering opportunities for tailoring these interactions.  more » « less
Award ID(s):
2110556
PAR ID:
10553263
Author(s) / Creator(s):
; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Express
Volume:
32
Issue:
23
ISSN:
1094-4087; OPEXFF
Format(s):
Medium: X Size: Article No. 41892
Size(s):
Article No. 41892
Sponsoring Org:
National Science Foundation
More Like this
  1. We investigate dielectric waveguides with subwavelength-scale modulation for applications in free-electron-photon interactions. We show that such waveguides are capable of supporting low-loss modes that can efficiently couple to co-propagating, <10-keV electrons. 
    more » « less
  2. The interaction between free electrons and photons in electron microscopes offers unique opportunities for microscopy and quantum science. For example, modulating electron beams with multiple laser excitations, researchers have demonstrated a novel near-field electron microscope, capable of probing electromagnetic excitations on the nanometer spatial scale and in the attosecond (10 −18 s) temporal range [see D. Nabben et al., Nature, 619, 63 (2023)]. Additionally, it has recently been demonstrated that the interaction between free electrons and photons in an electron microscope can be quantum coherent, and furthermore, this quantum coherence could potentially be leveraged for heralded sources of single electrons and photons [see A. Feist et al., Science, 377, 777 (2022)]. Although promising, these innovations in free-electron-photon interactions have thus far suffered a significant limitation: they require high-energy (>100-ke V) electron beams. Accordingly, these demonstrations have taken place in energetic (and expensive) transmission electron microscopes (TEMs). TEMs are a logical setting for these experiments, as their high-energy electrons can be velocity-matched to co-propagating photons in dielectric waveguides. However, achieving such velocity-matching between photons in conventional dielectric waveguides and electrons is not feasible for the low electron energies (<30-keV) in more common scanning electron microscope (SEMs). 
    more » « less
  3. We present a broadband integrated photonic polarization splitter and rotator (PSR) using adiabatically tapered coupled waveguides with subwavelength grating (SWG) claddings. The PSR adiabatically rotates and splits the fundamental transverse-magnetic (TM0) input to the fundamental transverse-electric (TE0) mode in the coupler waveguide, while passing the TE0input through the same waveguide. The SWGs work as an anisotropic metamaterial and facilitate modal conversions, making the PSR efficient and broadband. We rigorously present our design approaches in each section and show the SWG effect by comparing with and without the SWG claddings. The coupling coefficients in each segment explicitly show a stronger coupling effect when the SWGs are included, confirmed by the coupled-mode theory simulations. The full numerical simulation shows that the SWG-PSR operates at 1500–1750 nm (≈250 nm) wavelengths with an extinction ratio larger than 20 dB, confirmed by the experiment for the 1490–1590 nm range. The insertion losses are below 1.3 dB. Since our PSR is designed based on adiabatical mode evolution, the proposed PSR is expected to be tolerant to fabrication variations and should be broadly applicable to polarization management in photonic integrated circuits. 
    more » « less
  4. We investigate how free-electrons can excite modes in nearby photonic waveguides. Using particle-in-cell simulations, we explore how a free-electron packet can couple energy into multiple, velocity-matched modes of an adjacent silicon waveguide. 
    more » « less
  5. Abstract Energetic particle injections are commonly observed in Jupiter's magnetosphere and have important impacts on the radiation belts. We evaluate the roles of electron injections in the dynamics of whistler‐mode waves and relativistic electrons using Juno measurements and wave‐particle interaction modeling. The Juno spacecraft observed injected electron flux bursts at energies up to 300 keV atMshell ∼11 near the magnetic equator during perijove‐31. The electron injections are related to chorus wave bursts at 0.05–0.5fcefrequencies, wherefceis the electron gyrofrequency. The electron pitch angle distributions are anisotropic, peaking near 90° pitch angle, and the fluxes are high during injections. We calculate the whistler‐mode wave growth rates using the observed electron distributions and linear theory. The frequency spectrum of the wave growth rate is consistent with that of the observed chorus magnetic intensity, suggesting that the observed electron injections provide free energy to generate whistler‐mode chorus waves. We further use quasilinear theory to model the impacts of chorus waves on 0.1–10 MeV electrons. Our modeling shows that the chorus waves could cause the pitch angle scattering loss of electrons at <1 MeV energies and accelerate relativistic electrons at multiple MeV energies in Jupiter's outer radiation belt. The electron injections also provide an important seed population at several hundred keV energies to support the acceleration to higher energies. Our wave‐particle interaction modeling demonstrates the energy flow from the electron injections to the relativistic electron population through the medium of whistler‐mode waves in Jupiter's outer radiation belt. 
    more » « less