skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on October 14, 2025

Title: A Slices Perspective for Incremental Nonparametric Inference in High Dimensional State Spaces
We introduce an innovative method for incremental nonparametric probabilistic inference in high-dimensional state spaces. Our approach leverages slices from high-dimensional surfaces to efficiently approximate posterior distributions of any shape. Unlike many existing graph-based methods, our slices perspective eliminates the need for additional intermediate reconstructions, maintaining a more accurate representation of posterior distributions. Additionally, we propose a novel heuristic to balance between accuracy and efficiency, enabling real-time operation in nonparametric scenarios. In empirical evaluations on synthetic and real-world datasets, our slices approach consistently outperforms other state-of-the-art methods. It demonstrates superior accuracy and achieves a significant reduction in computational complexity, often by an order of magnitude.  more » « less
Award ID(s):
2008279
PAR ID:
10553333
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IEEE/RSJ International Conference on Intelligent Robots and Systems
Date Published:
Format(s):
Medium: X
Location:
Abu Dhabi, UAE
Sponsoring Org:
National Science Foundation
More Like this
  1. We introduce an innovative method for incremental nonparametric probabilistic inference in high-dimensional state spaces. Our approach leverages slices from high-dimensional surfaces to efficiently approximate posterior distributions of any shape. Unlike many existing graph-based methods, our slices perspective eliminates the need for additional intermediate reconstructions, maintaining a more accurate representation of posterior distributions. Additionally, we propose a novel heuristic to balance between accuracy and efficiency, enabling real-time operation in nonparametric scenarios. In empirical evaluations on synthetic and real-world datasets, our slices approach consistently outperforms other state-of-the-art methods. It demonstrates superior accuracy and achieves a significant reduction in computational complexity, often by an order of magnitude. 
    more » « less
  2. Abstract Inference is crucial in modern astronomical research, where hidden astrophysical features and patterns are often estimated from indirect and noisy measurements. Inferring the posterior of hidden features, conditioned on the observed measurements, is essential for understanding the uncertainty of results and downstream scientific interpretations. Traditional approaches for posterior estimation include sampling-based methods and variational inference (VI). However, sampling-based methods are typically slow for high-dimensional inverse problems, while VI often lacks estimation accuracy. In this paper, we proposeα-deep probabilistic inference, a deep learning framework that first learns an approximate posterior usingα-divergence VI paired with a generative neural network, and then produces more accurate posterior samples through importance reweighting of the network samples. It inherits strengths from both sampling and VI methods: it is fast, accurate, and more scalable to high-dimensional problems than conventional sampling-based approaches. We apply our approach to two high-impact astronomical inference problems using real data: exoplanet astrometry and black hole feature extraction. 
    more » « less
  3. Gaussian processes (GPs) offer a flexible class of priors for nonparametric Bayesian regression, but popular GP posterior inference methods are typically prohibitively slow or lack desirable finite-data guarantees on quality. We develop a scalable approach to approximate GP regression, with finite-data guarantees on the accuracy of our pointwise posterior mean and variance estimates. Our main contribution is a novel objective for approximate inference in the nonparametric setting: the preconditioned Fisher (pF) divergence. We show that unlike the Kullback–Leibler divergence (used in variational inference), the pF divergence bounds bounds the 2-Wasserstein distance, which in turn provides tight bounds on the pointwise error of mean and variance estimates. We demonstrate that, for sparse GP likelihood approximations, we can minimize the pF divergence bounds efficiently. Our experiments show that optimizing the pF divergence bounds has the same computational requirements as variational sparse GPs while providing comparable empirical performance—in addition to our novel finite-data quality guarantees. 
    more » « less
  4. null (Ed.)
    We present the Sequential Ensemble Transform (SET) method, an approach for generating approximate samples from a Bayesian posterior distribution. The method explores the posterior distribution by solving a sequence of discrete optimal transport problems to produce a series of transport plans which map prior samples to posterior samples. We prove that the sequence of Dirac mixture distributions produced by the SET method converges weakly to the true posterior as the sample size approaches infinity. Furthermore, our numerical results indicate that, when compared to standard Sequential Monte Carlo (SMC) methods, the SET approach is more robust to the choice of Markov mutation kernels and requires less computational efforts to reach a similar accuracy when used to explore complex posterior distributions. Finally, we describe adaptive schemes that allow to completely automate the use of the SET method. 
    more » « less
  5. We propose a new approach, the calibrated nonparametric scan statistic (CNSS), for more accurate detection of anomalous patterns in large-scale, real-world graphs. Scan statistics identify connected subgraphs that are interesting or unexpected through maximization of a likelihood ratio statistic; in particular, nonparametric scan statistics (NPSSs) identify subgraphs with a higher than expected proportion of individually significant nodes. However, we show that recently proposed NPSS methods are miscalibrated, failing to account for the maximization of the statistic over the multiplicity of subgraphs. This results in both reduced detection power for subtle signals, and low precision of the detected subgraph even for stronger signals. Thus we develop a new statistical approach to recalibrate NPSSs, correctly adjusting for multiple hypothesis testing and taking the underlying graph structure into account. While the recalibration, based on randomization testing, is computationally expensive, we propose both an efficient (approximate) algorithm and new, closed-form lower bounds (on the expected maximum proportion of significant nodes for subgraphs of a given size, under the null hypothesis of no anomalous patterns). These advances, along with the integration of recent core-tree decomposition methods, enable CNSS to scale to large real-world graphs, with substantial improvement in the accuracy of detected subgraphs. Extensive experiments on both semi-synthetic and real-world datasets are demonstrated to validate the effectiveness of our proposed methods, in comparison with state-of-the-art counterparts. 
    more » « less