Abstract The electron paramagnetic resonance (EPR) spectra of lanthanide(III) ions besides Gd3+, bound to small‐molecule and protein chelators, are uncharacterized. Here, the EPR properties of 7 lanthanide(III) ions bound to the natural lanthanide‐binding protein, lanmodulin (LanM), and the synthetic small‐molecule chelator, 3,4,3‐LI(1,2‐HOPO) (“HOPO”), were systematically investigated. Echo‐detected pulsed EPR spectra reveal intense signals from ions for which the normal continuous‐wave first‐derivative spectra are negligibly different from zero. Spectra of Kramers lanthanide ions Ce3+, Nd3+, Sm3+, Er3+, and Yb3+, and non‐Kramers Tb3+and Tm3+, bound to LanM are more similar to the ions in dilute aqueous:ethanol solution than to those coordinated with HOPO. Lanmodulins from two bacteria, with distinct metal‐binding sites, had similar spectra for Tb3+but different spectra for Nd3+. Spin echo dephasing rates (1/Tm) are faster for lanthanides than for most transition metals and limited detection of echoes to temperatures below ~6 to 12 K. Dephasing rates were environment dependent and decreased in the order water:ethanol>LanM>HOPO, which is attributed to decreasing librational motion. These results demonstrate that the EPR spectra and relaxation times of lanthanide(III) ions are sensitive to coordination environment, motivating wider application of these methods for characterization of both small‐molecule and biomolecule interactions with lanthanides.
more »
« less
This content will become publicly available on October 28, 2025
Modulating metal-centered dimerization of a lanthanide chaperone protein for separation of light lanthanides
Elucidating details of biology’s selective uptake and trafficking of rare earth elements, particularly the lanthanides, has the potential to inspire sustainable biomolecular separations of these essential metals for myriad modern technologies. Here, we biochemically and structurally characterizeMethylobacterium(Methylorubrum)extorquensLanD, a periplasmic protein from a bacterial gene cluster for lanthanide uptake. This protein provides only four ligands at its surface-exposed lanthanide-binding site, allowing for metal-centered protein dimerization that favors the largest lanthanide, LaIII. However, the monomer prefers NdIIIand SmIII, which are disfavored lanthanides for cellular utilization. Structure-guided mutagenesis of a metal-ligand and an outer-sphere residue weakens metal binding to the LanD monomer and enhances dimerization for PrIIIand NdIIIby 100-fold. Selective dimerization enriches high-value PrIIIand NdIIIrelative to low-value LaIIIand CeIIIin an all-aqueous process, achieving higher separation factors than lanmodulins and comparable or better separation factors than common industrial extractants. Finally, we show that LanD interacts with lanmodulin (LanM), a previously characterized periplasmic protein that shares LanD’s preference for NdIIIand SmIII. Our results suggest that LanD’s unusual metal-binding site transfers less-desirable lanthanides to LanM to siphon them away from the pathway for cytosolic import. The properties of LanD show how relatively weak chelators can achieve high selectivity, and they form the basis for the design of protein dimers for separation of adjacent lanthanide pairs and other metal ions.
more »
« less
- Award ID(s):
- 1945015
- PAR ID:
- 10553336
- Publisher / Repository:
- National Academy of Sciences
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 121
- Issue:
- 45
- ISSN:
- 0027-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The biological importance of lanthanides, and the early lanthanides (La 3+ –Nd 3+ ) in particular, has only recently been recognized, and the structural principles underlying selective binding of lanthanide ions in biology are not yet well established. Lanmodulin (LanM) is a novel protein that displays unprecedented affinity and selectivity for lanthanides over most other metal ions, with an uncommon preference for the early lanthanides. Its utilization of EF-hand motifs to bind lanthanides, rather than the Ca 2+ typically recognized by these motifs in other proteins, has led it to be used as a model system to understand selective lanthanide recognition. Two-dimensional infrared (2D IR) spectroscopy combined with molecular dynamics simulations were used to investigate LanM's selectivity mechanisms by characterizing local binding site geometries upon coordination of early and late lanthanides as well as calcium. These studies focused on the protein's uniquely conserved proline residues in the second position of each EF-hand binding loop. We found that these prolines constrain the EF-hands for strong coordination of early lanthanides. Substitution of this proline results in a more flexible binding site to accommodate a larger range of ions but also results in less compact coordination geometries and greater disorder within the binding site. Finally, we identify the conserved glycine in the sixth position of each EF-hand as a mediator of local binding site conformation and global secondary structure. Uncovering fundamental structure–function relationships in LanM informs the development of synthetic biology technologies targeting lanthanides in industrial applications.more » « less
-
Abstract Technologically critical rare-earth elements are notoriously difficult to separate, owing to their subtle differences in ionic radius and coordination number1–3. The natural lanthanide-binding protein lanmodulin (LanM)4,5is a sustainable alternative to conventional solvent-extraction-based separation6. Here we characterize a new LanM, fromHansschlegelia quercus(Hans-LanM), with an oligomeric state sensitive to rare-earth ionic radius, the lanthanum(III)-induced dimer being >100-fold tighter than the dysprosium(III)-induced dimer. X-ray crystal structures illustrate how picometre-scale differences in radius between lanthanum(III) and dysprosium(III) are propagated toHans-LanM’s quaternary structure through a carboxylate shift that rearranges a second-sphere hydrogen-bonding network. Comparison to the prototypal LanM fromMethylorubrum extorquensreveals distinct metal coordination strategies, rationalizingHans-LanM’s greater selectivity within the rare-earth elements. Finally, structure-guided mutagenesis of a key residue at theHans-LanM dimer interface modulates dimerization in solution and enables single-stage, column-based separation of a neodymium(III)/dysprosium(III) mixture to >98% individual element purities. This work showcases the natural diversity of selective lanthanide recognition motifs, and it reveals rare-earth-sensitive dimerization as a biological principle by which to tune the performance of biomolecule-based separation processes.more » « less
-
Abstract Lanthanides, which are part of the rare earth elements group have numerous applications in electronics, medicine and energy storage. However, our ability to extract them is not meeting the rapidly increasing demand. The discovery of the bacterial periplasmic lanthanide‐binding protein lanmodulin spurred significant interest in developing biotechnological routes for lanthanide detection and extraction. Here we report the construction of β‐lactamase‐lanmodulin chimeras that function as lanthanide‐controlled enzymatic switches. Optimized switches demonstrated dynamic ranges approaching 3000‐fold and could accurately quantify lanthanide ions in simple colorimetric or electrochemical assays.E.colicells expressing such chimeras grow on β‐lactam antibiotics only in the presence of lanthanide ions. The developed lanthanide‐controlled protein switches represent a novel platform for engineering metal‐binding proteins for biosensing and microbial engineering.more » « less
-
Cotruvo Jr, Joseph A (Ed.)Recent work has revealed that certain lanthanides—in particular, the more earth-abundant, lighter lanthanides—play essential roles in pyrroloquinoline quinone (PQQ) dependent alcohol dehydrogenases from methylotrophic and non-methylotrophic bacteria. More recently, efforts of several laboratories have begun to identify the molecular players (the lanthanome) involved in selective uptake, recognition, and utilization of lanthanides within the cell. In this chapter, we present protocols for the heterologous expression in Escherichia coli, purification, and characterization of many of the currently known proteins that comprise the lanthanome of the model facultative methylotroph, Methylorubrum extorquens AM1. In addition to the methanol dehydrogenase XoxF, these proteins include the associated c-type cytochrome, XoxG, and solute binding protein, XoxJ. We also present new, streamlined protocols for purification of the highly selective lanthanide-binding protein, lanmodulin, and a solute binding protein for PQQ, PqqT. Finally, we discuss simple, spectroscopic methods for determining lanthanide- and PQQ-binding stoichiometry of proteins. We envision that these protocols will be useful to investigators identifying and characterizing novel members of the lanthanome in many organisms.more » « less