skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 19, 2025

Title: Phage-plasmid hybrids are found throughout diverse environments and encode niche-specific functional traits
ABSTRACT Phage-plasmids are unique mobile genetic elements that function as plasmids and temperate phages. While it has been observed that such elements often encode antibiotic resistance genes and defense system genes, little else is known about other functional traits they encode. Further, no study to date has documented their environmental distribution and prevalence. Here, we performed genome sequence mining of public databases of phages and plasmids utilizing a random forest classifier to identify phage-plasmids. We recovered 5,742 unique phage-plasmid genomes from a remarkable array of disparate environments, including human, animal, plant, fungi, soil, sediment, freshwater, wastewater, and saltwater environments. The resulting genomes were used in a comparative sequence analysis, revealing functional traits/accessory genes associated with specific environments. Host-associated elements contained the most defense systems (including CRISPR and anti-CRISPR systems) as well as antibiotic resistance genes, while other environments, such as freshwater and saltwater systems, tended to encode components of various biosynthetic pathways. Interestingly, we identified genes encoding for certain functional traits, including anti-CRISPR systems and specific antibiotic resistance genes, that were enriched in phage-plasmids relative to both plasmids and phages. Our results highlight that phage-plasmids are found across a wide-array of environments and likely play a role in shaping microbial ecology in a multitude of niches. IMPORTANCEPhage-plasmids are a novel, hybrid class of mobile genetic element which retain aspects of both phages and plasmids. However, whether phage-plasmids represent merely a rarity or are instead important players in horizontal gene transfer and other important ecological processes has remained a mystery. Here, we document that these hybrids are encountered across a broad range of distinct environments and encode niche-specific functional traits, including the carriage of antibiotic biosynthesis genes and both CRISPR and anti-CRISPR defense systems. These findings highlight phage-plasmids as an important class of mobile genetic element with diverse roles in multiple distinct ecological niches.  more » « less
Award ID(s):
2004751
PAR ID:
10553423
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
bioRxiv
Date Published:
Format(s):
Medium: X
Institution:
bioRxiv
Sponsoring Org:
National Science Foundation
More Like this
  1. Pfeiffer, Julie K. (Ed.)
    ABSTRACT The interplay between defense and counterdefense systems of bacteria and bacteriophages has been driving the evolution of both organisms, leading to their great genetic diversity. Restriction-modification systems are well-studied defense mechanisms of bacteria, while phages have evolved covalent modifications as a counterdefense mechanism to protect their genomes against restriction. Here, we present evidence that these genome modifications might also have been selected to counter, broadly, the CRISPR-Cas systems, an adaptive bacterial defense mechanism. We found that the phage T4 genome modified by cytosine hydroxymethylation and glucosylation (ghmC) exhibits various degrees of resistance to the type V CRISPR-Cas12a system, producing orders of magnitude more progeny than the T4(C) mutant, which contains unmodified cytosines. Furthermore, the progeny accumulated CRISPR escape mutations, allowing rapid evolution of mutant phages under CRISPR pressure. A synergistic effect on phage restriction was observed when two CRISPR-Cas12a complexes were targeted to independent sites on the phage genome, another potential countermechanism by bacteria to more effectively defend themselves against modified phages. These studies suggest that the defense-counterdefense mechanisms exhibited by bacteria and phages, while affording protection against one another, also provide evolutionary benefits for both. IMPORTANCE Restriction-modification (R-M) and CRISPR-Cas systems are two well-known defense mechanisms of bacteria. Both recognize and cleave phage DNA at specific sites while protecting their own genomes. It is well accepted that T4 and other phages have evolved counterdefense mechanisms to protect their genomes from R-M cleavage by covalent modifications, such as the hydroxymethylation and glucosylation of cytosine. However, it is unclear whether such genome modifications also provide broad protection against the CRISPR-Cas systems. Our results suggest that genome modifications indeed afford resistance against CRISPR systems. However, the resistance is not complete, and it is also variable, allowing rapid evolution of mutant phages that escape CRISPR pressure. Bacteria in turn could target more than one site on the phage genome to more effectively restrict the infection of ghmC-modified phage. Such defense-counterdefense strategies seem to confer survival advantages to both the organisms, one of the possible reasons for their great diversity. 
    more » « less
  2. Plasmids are mobile genetic elements known to carry secondary metabolic genes that affect the fitness and survival of microbes in the environment. Well-studied cases of plasmid-encoded secondary metabolic genes in marine habitats include toxin/antitoxin and antibiotic biosynthesis/resistance genes. Here, we examine metagenome-assembled genomes (MAGs) from the permanently-stratified water column of the Cariaco Basin for integrated plasmids that encode biosynthetic gene clusters of secondary metabolites (smBGCs). We identify 16 plasmid-borne smBGCs in MAGs associated primarily with Planctomycetota and Pseudomonadota that encode terpene-synthesizing genes, and genes for production of ribosomal and non-ribosomal peptides. These identified genes encode for secondary metabolites that are mainly antimicrobial agents, and hence, their uptake via plasmids may increase the competitive advantage of those host taxa that acquire them. The ecological and evolutionary significance of smBGCs carried by prokaryotes in oxygen-depleted water columns is yet to be fully elucidated. 
    more » « less
  3. Hatfull, Graham F. (Ed.)
    ABSTRACT Bacteria and bacteriophages (phages) have evolved potent defense and counterdefense mechanisms that allowed their survival and greatest abundance on Earth. CRISPR (clustered regularly interspaced short palindromic repeat)-Cas (CRISPR-associated) is a bacterial defense system that inactivates the invading phage genome by introducing double-strand breaks at targeted sequences. While the mechanisms of CRISPR defense have been extensively investigated, the counterdefense mechanisms employed by phages are poorly understood. Here, we report a novel counterdefense mechanism by which phage T4 restores the genomes broken by CRISPR cleavages. Catalyzed by the phage-encoded recombinase UvsX, this mechanism pairs very short stretches of sequence identity (minihomology sites), as few as 3 or 4 nucleotides in the flanking regions of the cleaved site, allowing replication, repair, and stitching of genomic fragments. Consequently, a series of deletions are created at the targeted site, making the progeny genomes completely resistant to CRISPR attack. Our results demonstrate that this is a general mechanism operating against both type II (Cas9) and type V (Cas12a) CRISPR-Cas systems. These studies uncovered a new type of counterdefense mechanism evolved by T4 phage where subtle functional tuning of preexisting DNA metabolism leads to profound impact on phage survival. IMPORTANCE Bacteriophages (phages) are viruses that infect bacteria and use them as replication factories to assemble progeny phages. Bacteria have evolved powerful defense mechanisms to destroy the invading phages by severing their genomes soon after entry into cells. We discovered a counterdefense mechanism evolved by phage T4 to stitch back the broken genomes and restore viral infection. In this process, a small amount of genetic material is deleted or another mutation is introduced, making the phage resistant to future bacterial attack. The mutant virus might also gain survival advantages against other restriction conditions or DNA damaging events. Thus, bacterial attack not only triggers counterdefenses but also provides opportunities to generate more fit phages. Such defense and counterdefense mechanisms over the millennia led to the extraordinary diversity and the greatest abundance of bacteriophages on Earth. Understanding these mechanisms will open new avenues for engineering recombinant phages for biomedical applications. 
    more » « less
  4. Nojiri, Hideaki (Ed.)
    ABSTRACT Bacterial mobile genetic elements (MGEs) encode functional modules that perform both core and accessory functions for the element, the latter of which are often only transiently associated with the element. The presence of these accessory genes, which are often close homologs to primarily immobile genes, incur high rates of false positives and, therefore, limits the usability of these databases for MGE annotation. To overcome this limitation, we analyzed 10,776,849 protein sequences derived from eight MGE databases to compile a comprehensive set of 6,140 manually curated protein families that are linked to the “life cycle” (integration/excision, replication/recombination/repair, transfer, stability/transfer/defense, and phage-specific processes) of plasmids, phages, integrative, transposable, and conjugative elements. We overlay experimental information where available to create a tiered annotation scheme of high-quality annotations and annotations inferred exclusively through bioinformatic evidence. We additionally provide an MGE-class label for each entry (e.g., plasmid or integrative element), and assign to each entry a major and minor category. The resulting database, mobileOG-db (for mobile orthologous groups), comprises over 700,000 deduplicated sequences encompassing five major mobileOG categories and more than 50 minor categories, providing a structured language and interpretable basis for an array of MGE-centered analyses. mobileOG-db can be accessed at mobileogdb.flsi.cloud.vt.edu/, where users can select, refine, and analyze custom subsets of the dynamic mobilome. IMPORTANCE The analysis of bacterial mobile genetic elements (MGEs) in genomic data is a critical step toward profiling the root causes of antibiotic resistance, phenotypic or metabolic diversity, and the evolution of bacterial genera. Existing methods for MGE annotation pose high barriers of biological and computational expertise to properly harness. To bridge this gap, we systematically analyzed 10,776,849 proteins derived from eight databases of MGEs to identify 6,140 MGE protein families that can serve as candidate hallmarks, i.e., proteins that can be used as “signatures” of MGEs to aid annotation. The resulting resource, mobileOG-db, provides a multilevel classification scheme that encompasses plasmid, phage, integrative, and transposable element protein families categorized into five major mobileOG categories and more than 50 minor categories. mobileOG-db thus provides a rich resource for simple and intuitive element annotation that can be integrated seamlessly into existing MGE detection pipelines and colocalization analyses. 
    more » « less
  5. McMahon, Katherine (Ed.)
    ABSTRACT Mobile genetic elements (MGEs) drive bacterial evolution, alter gene availability within microbial communities, and facilitate adaptation to ecological niches. In natural systems, bacteria simultaneously possess or encounter multiple MGEs, yet their combined influences on microbial communities are poorly understood. Here, we investigate interactions among MGEs in the marine bacterium Sulfitobacter pontiacus . Two related strains, CB-D and CB-A, each harbor a single prophage. These prophages share high sequence identity with one another and an integration site within the host genome, yet these strains exhibit differences in “spontaneous” prophage induction (SPI) and consequent fitness. To better understand mechanisms underlying variation in SPI between these lysogens, we closed their genomes, which revealed that in addition to harboring different prophage genotypes, CB-A lacks two of the four large, low-copy-number plasmids possessed by CB-D. To assess the relative roles of plasmid content versus prophage genotype on host physiology, a panel of derivative strains varying in MGE content were generated. Characterization of these derivatives revealed a robust link between plasmid content and SPI, regardless of prophage genotype. Strains possessing all four plasmids had undetectable phage in cell-free lysates, while strains lacking either one plasmid (pSpoCB-1) or a combination of two plasmids (pSpoCB-2 and pSpoCB-4) produced high (>10 5 PFU/mL) phage titers. Homologous plasmid sequences were identified in related bacteria, and plasmid and phage genes were found to be widespread in Tara Oceans metagenomic data sets. This suggests that plasmid-dependent stabilization of prophages may be commonplace throughout the oceans. IMPORTANCE The consequences of prophage induction on the physiology of microbial populations are varied and include enhanced biofilm formation, conferral of virulence, and increased opportunity for horizontal gene transfer. These traits lead to competitive advantages for lysogenized bacteria and influence bacterial lifestyles in a variety of niches. However, biological controls of “spontaneous” prophage induction, the initiation of phage replication and phage-mediated cell lysis without an overt stressor, are not well understood. In this study, we observed a novel interaction between plasmids and prophages in the marine bacterium Sulfitobacter pontiacus . We found that loss of one or more distinct plasmids—which we show carry genes ubiquitous in the world’s oceans—resulted in a marked increase in prophage induction within lysogenized strains. These results demonstrate cross talk between different mobile genetic elements and have implications for our understanding of the lysogenic-lytic switches of prophages found not only in marine environments, but throughout all ecosystems. 
    more » « less