skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on August 25, 2025

Title: N‐Halogenation by Vanadium‐Dependent Haloperoxidases Enables 1,2,4‐Oxadiazole Synthesis
Nitrogen‐containing compounds are valuable synthetic intermediates and targets in nearly every chemical industry. While methods for nitrogen‐carbon and nitrogen‐heteroatom bond formation have primarily relied on nucleophilic nitrogen atom reactivity, molecules containing nitrogen‐halogen bonds allow for electrophilic or radical reactivity modes at the nitrogen center. Despite the growing synthetic utility of nitrogen‐halogen bond‐containing compounds, selective catalytic strategies for their synthesis are largely underexplored. We recently discovered that the vanadium‐dependent haloperoxidase (VHPO) class of enzymes are a suitable biocatalyst platform for nitrogen‐halogen bond formation. Herein, we show that VHPOs perform selective halogenation of a range of substituted benzamidine hydrochlorides to produce the corresponding N’‐halobenzimidamides. This biocatalytic platform is applied to the synthesis of 1,2,4‐oxadiazoles from the corresponding N‐acylbenzamidines in high yield and with excellent chemoselectivity. Finally, the synthetic applicability of this biotechnology is demonstrated in an extension to nitrogen‐nitrogen bond formation and the chemoenzymatic synthesis of the Duchenne muscular dystrophy drug, ataluren.  more » « less
Award ID(s):
2050674
PAR ID:
10553434
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Angewandte Chemie International Edition
ISSN:
1433-7851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In order to explore how σ-hole potentials, as evaluated by molecular electrostatic potential (MEP) calculations, affect the ability of halogen atoms to engage in structure-directing intermolecular interactions, we synthesized four series of ethynyl halogen-substituted amide containing pyridines (activated targets); ( N -(pyridin-2-yl)benzamides (Bz-act-X), N -(pyridin-2-yl)picolinamides (2act-X), N -(pyridin-2-yl)nicotinamides (3act-X) and N -(pyridin-2-yl) isonicotinamides (4act-X), where X = Cl/Br/I. The molecules are deliberately equipped with three distinctly different halogen-bond acceptor sites, π, N(pyr), and OC, to determine binding site preferences of different halogen-bond donors. Crystallographic data for ten (out of a possible twelve) new compounds were thus analyzed and compared with data for the corresponding unactivated species. The calculated MEPs of all the halogen atoms were higher in the activated targets in comparison to the unactivated targets and were in the order of iodine ≈ chloroethynyl < bromoethynyl < iodoethynyl. This increased positive σ-hole potential led to a subsequent increase in propensity for halogen-bond formation. Two of the four chloroethynyl structures showed halogen bonding, and all three of the structurally characterized bromoethynyl species engaged in halogen bonding. The analogous unactived species showed no halogen bonds. Each chloroethynyl donor selected a π-cloud as acceptor and the bromoethynyl halogen-bond donors opted for either π or N(pyr) sites, whereas all halogen bonds involving an iodoethynyl halogen-bond donor (including both polymorphs of Bz-act-I ) engaged exclusively with a N(pyr) acceptor site. 
    more » « less
  2. Formation of C‐N bonds through the electrochemical utilization of CO2 and nitrogen containing compounds (N‐compounds) is appealing for the purpose of converting waste and readily available sources or pollutants into value added chemicals at ambient conditions. Existing research predominantly explores these electrochemical reactions independently, often in aqueous electrolytes, leading to challenges associated with competitive hydrogen evolution reaction (HER), low product selectivity, and yield. Functional electrolytes such as those containing ionic liquids (ILs) present selective solubility to the solute reactants and present unique interactions with the electrode surface that can suppress the undesired side reaction HER while simultaneously co‐catalyzing the conversion of CO2 and N‐compounds such as N2, NO, NO2, andNO3. In this concept paper, we discuss how the microenvironment enabled by ILs can be  leveraged to stabilize reaction intermediates at the electrode‐electrolyte interface, thereby promoting C‐N bond formation on an active electrode surface at reduced overpotential, with the case study of CO2 and N‐compounds co‐catalysis to generate urea. 
    more » « less
  3. Diarylhalonium compounds provide new opportunities as reagents and catalysts in the field of organic synthesis. The three center, four electron (3c–4e) bond is a center piece of their reactivity, but structural variation among the diarylhaloniums, and in comparison with other λ 3 -iodanes, indicates that the model needs refinement for broader applicability. We use a combination of Density Functional Theory (DFT), Natural Bond Orbital (NBO) Theory, and X-ray structure data to correlate bonding and structure for a λ 3 -iodane and a series of diarylchloronium, bromonium, and iodonium salts, and their isoelectronic diarylchalcogen counterparts. This analysis reveals that the s-orbital on the central halogen atom plays a greater role in the 3c–4e bond than previously considered. Finally, we show that our revised bonding model and associated structures account for both kinetic and thermodynamic reactivity for both acyclic phenyl(mesityl)halonium and cyclic dibenzohalolium salts. 
    more » « less
  4. null (Ed.)
    The formation of amide bonds represents one of the most fundamental processes in organic synthesis. Transition-metal-catalyzed activation of acyclic twisted amides has emerged as an increasingly powerful platform in synthesis. Herein, we report the transamidation of N-activated twisted amides by selective N–C(O) cleavage mediated by air- and moisture-stable half-sandwich Ni(II)–NHC (NHC = N-heterocyclic carbenes) complexes. We demonstrate that the readily available cyclopentadienyl complex, [CpNi(IPr)Cl] (IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene), promotes highly selective transamidation of the N–C(O) bond in twisted N-Boc amides with non-nucleophilic anilines. The reaction provides access to secondary anilides via the non-conventional amide bond-forming pathway. Furthermore, the amidation of activated phenolic and unactivated methyl esters mediated by [CpNi(IPr)Cl] is reported. This study sets the stage for the broad utilization of well-defined, air- and moisture-stable Ni(II)–NHC complexes in catalytic amide bond-forming protocols by unconventional C(acyl)–N and C(acyl)–O bond cleavage reactions. 
    more » « less
  5. The direct nucleophilic addition to amides represents an attractive methodology in organic synthesis that tackles amidic resonance by ground-state destabilization. This approach has been recently accomplished with carbon, nitrogen and oxygen nucleophiles. Herein, we report an exceedingly mild method for the direct thioesterification and selenoesterification of amides by selective N–C(O) bond cleavage in the absence of transition metals. Acyclic amides undergo N–C(O) to S/Se–C(O) interconversion to give the corresponding thioesters and selenoesters in excellent yields at room temperature via a tetrahedral intermediate pathway (cf. an acyl metal). 
    more » « less