The interaction between aluminum cations and acetone is studied in the gas phase via photodissociation vibrational spectroscopy from 1100 to 2000 cm-1. Spectra of Al+(acetone)(N2) and ions with the stoichiometry of Al+(acetone)n (n=2-5) were measured. The experimental results are compared to DFT calculated vibrational spectra to determine the structures of the complexes. The spectra show a red shift of the C=O stretch and a blue shift of the CCC stretch which decrease as the size of the clusters increases. The calculations predict that the most stable isomer for n≥3 is a pinacolate in which oxidation of the Al+ enables reductive C-C coupling between two acetone ligands. Experimentally, pinacolate formation is observed for n=5, as evidenced by a new peak observed at 1185 cm-1 characteristic of the pinacolate C-O stretch. 
                        more » 
                        « less   
                    
                            
                            Reactions of Aluminum Oxide Cluster Cations with Ethane: A Mass‐Spectrometric and Vibrational Spectroscopy Study
                        
                    
    
            Abstract The pathways for the reactions of aluminum oxide cluster ions with ethane have been measured. For selected ions (Al2O+, Al3O2+, Al3O4+, Al4O7+) the structure of the collisionally‐stabilized reaction intermediates were explored by measuring the photodissociation vibrational spectra from 2600 cm−1–3100 cm−1. Density functional theory was used to calculate features of the potential energy surfaces for the reactions and the vibrational spectra of intermediates. Generally, more than one isomer contributes to the observed spectrum. The oxygen‐deficient clusters Al2O+and Al3O2+have large C−H activation barriers, so only the entrance channel complexes in which intact C2H6binds to aluminum are observed. This interaction leads to a substantial (~200 cm−1) red shift of the C−H symmetric stretch in ethane, indicating significant weakening of the proximal C−H bonds. In Al3O4+, the complex formed by interactions with three C2H6is investigated and, in addition to entrance channel complexes, the C−H activation intermediate Al3O4H+(C2H5)(C2H6)2is observed. For oxygen‐rich Al4O7+, the C2H6is favored to bind at an aluminum site far from the reactive superoxide group, reducing the reactivity. As expected, oxygen‐rich species and open‐shell cluster ions have smaller barriers for C−H bond activation, except for Al3O4+which is predicted and observed to be reactive. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2154391
- PAR ID:
- 10553477
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- ChemPhysChem
- Volume:
- 25
- Issue:
- 23
- ISSN:
- 1439-4235
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            The functionalization of methane, ethane, and other alkanes derived from fossil fuels is a central goal in the chemical enterprise. Recently, a photocatalytic system comprising [CeIVCl5(OR)]2−[CeIV, cerium(IV); OR, –OCH3or –OCCl2CH3] was disclosed. The system was reportedly capable of alkane activation by alkoxy radicals (RO•) formed by CeIV–OR bond photolysis. In this work, we present evidence that the reported carbon-hydrogen (C–H) activation of alkanes is instead mediated by the photocatalyst [NEt4]2[CeCl6] (NEt4+, tetraethylammonium), and RO• are not intermediates. Spectroscopic analyses and kinetics were investigated for C–H activation to identify chlorine radical (Cl•) generation as the rate-limiting step. Density functional theory calculations support the formation of [Cl•][alcohol] adducts when alcohols are present, which can manifest a masked RO• character. This result serves as an important cautionary note for interpretation of radical trapping experiments.more » « less
- 
            Helium droplets are unique hosts for isolating diverse molecular ions for infrared spectroscopic experiments. Recently, it was found that electron impact ionization of ethylene clusters embedded in helium droplets produces diverse carbocations containing three and four carbon atoms, indicating effective ion–molecule reactions. In this work, similar experiments are reported but with the saturated hydrocarbon precursor of ethane. In distinction to ethylene, no characteristic bands of larger covalently bound carbocations were found, indicating inefficient ion–molecule reactions. Instead, the ionization in helium droplets leads to formation of weaker bound dimers, such as (C2H6)(C2H4)+, (C2H6)(C2H5)+, and (C2H6)(C2H6)+, as well as larger clusters containing several ethane molecules attached to C2H4+, C2H5+, and C2H6+ionic cores. The spectra of larger clusters resemble those for neutral, neat ethane clusters. This work shows the utility of the helium droplets to study small ionic clusters at ultra-low temperatures.more » « less
- 
            The binding motifs of clusters of Al+ and Al2+ with ethane, Alx+(C2H6)n (x = 1, 2; n = 1–3), are determined using vibrational photodissociation spectroscopy in the C–H stretching region (2550–3100 cm−1) in conjunction with spectra calculated using density functional theory. The relative energies of candidate structures are determined with the B3LYP-D3 and ωB97X-D density functionals and the 6–311++G(d,p) basis set. Local mode Hamiltonian calculations are better able to reproduce the spectra than scaled harmonic calculations, due to contributions from bending overtones and combination bands. Vibrational photodissociation spectra show a red shift in the stretching frequencies of C–H bonds that are proximate to the cation. This red shift decreases as the number of ethanes increases. For Al+(C2H6)n (n = 1–3), side-on (T-shaped) binding of the metal is preferred to end-on binding, and subsequent ligands bind on the same side of the cation. Similarly, for Al2+(C2H6)n (n = 1–3), T-shaped configurations in which the C–C and Al–Al bonds are approximately perpendicular and the ethane binds side-on to the Al2+ are preferred. In Al2+(C2H6)n (n = 1–3) complexes, intense bands are observed, which are due to overtones and combinations of symmetric deformations in Fermi resonance with the red-shifted C–H stretches.more » « less
- 
            null (Ed.)The addition of tert -butyl hydroperoxide ( t BuOOH) to two structurally related Mn II complexes containing N,N -bis(6-methyl-2-pyridylmethyl)ethane-1,2-diamine (6-Me-DPEN) and N,N -bis(6-methyl-2-pyridylmethyl)propane-1,2-diamine (6-Me-DPPN) results in the formation of high-valent bis-oxo complexes, namely di-μ-oxido-bis{[ N , N -bis(6-methyl-2-pyridylmethyl)ethane-1,2-diamine]manganese(II)}( Mn — Mn ) bis(tetraphenylborate) dihydrate, [Mn(C 16 H 22 N 4 ) 2 O 2 ](C 24 H 20 B) 2 ·2H 2 O or {[Mn IV (N 4 (6-Me-DPEN))] 2 ( μ -O) 2 }(2BPh 4 )(2H 2 O) ( 1 ) and di-μ-oxido-bis{[ N , N -bis(6-methyl-2-pyridylmethyl)propane-1,3-diamine]manganese(II)}( Mn — Mn ) bis(tetraphenylborate) diethyl ether disolvate, [Mn(C 17 H 24 N 4 ) 2 O 2 ](C 24 H 20 B) 2 ·2C 4 H 10 O or {[Mn IV (N 4 (6-MeDPPN))] 2 ( μ -O) 2 }(2BPh 4 )(2Et 2 O) ( 2 ). Complexes 1 and 2 both contain the `diamond core' motif found previously in a number of iron, copper, and manganese high-valent bis-oxo compounds. The flexibility in the propyl linker in the ligand scaffold of 2 , as compared to that of the ethyl linker in 1 , results in more elongated Mn—N bonds, as one would expect. The Mn—Mn distances and Mn—O bond lengths support an Mn IV oxidation state assignment for the Mn ions in both 1 and 2 . The angles around the Mn centers are consistent with the local pseudo-octahedral geometry.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
