skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Stereographic Spherical Sliced Wasserstein Distances
Comparing spherical probability distributions is of great interest in various fields, including geology, medical domains, computer vision, and deep representation learning. The utility of optimal transport-based distances, such as the Wasserstein distance, for comparing probability measures has spurred active research in developing computationally efficient variations of these distances for spherical probability measures. This paper introduces a high-speed and highly parallelizable distance for comparing spherical measures using the stereographic projection and the generalized Radon transform, which we refer to as the Stereographic Spherical Sliced Wasserstein (S3W) distance. We carefully address the distance distortion caused by the stereographic projection and provide an extensive theoretical analysis of our proposed metric and its rotationally invariant variation. Finally, we evaluate the performance of the proposed metrics and compare them with recent baselines in terms of both speed and accuracy through a wide range of numerical studies, including gradient flows and self-supervised learning. Our code is available at https://github.com/mint-vu/s3wd.  more » « less
Award ID(s):
2339898
PAR ID:
10553575
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
International Conference on Machine Learning
Date Published:
Format(s):
Medium: X
Location:
Vienna, Austria
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Optimal transport (OT) methods seek a transformation map (or plan) between two probability measures, such that the transformation has the minimum transportation cost. Such a minimum transport cost, with a certain power transform, is called the Wasserstein distance. Recently, OT methods have drawn great attention in statistics, machine learning, and computer science, especially in deep generative neural networks. Despite its broad applications, the estimation of high‐dimensional Wasserstein distances is a well‐known challenging problem owing to the curse‐of‐dimensionality. There are some cutting‐edge projection‐based techniques that tackle high‐dimensional OT problems. Three major approaches of such techniques are introduced, respectively, the slicing approach, the iterative projection approach, and the projection robust OT approach. Open challenges are discussed at the end of the review. This article is categorized under:Statistical and Graphical Methods of Data Analysis > Dimension ReductionStatistical Learning and Exploratory Methods of the Data Sciences > Manifold Learning 
    more » « less
  2. Abstract The Gromov–Wasserstein distance—a generalization of the usual Wasserstein distance—permits comparing probability measures defined on possibly different metric spaces. Recently, this notion of distance has found several applications in Data Science and in Machine Learning. With the goal of aiding both the interpretability of dissimilarity measures computed through the Gromov–Wasserstein distance and the assessment of the approximation quality of computational techniques designed to estimate the Gromov–Wasserstein distance, we determine the precise value of a certain variant of the Gromov–Wasserstein distance between unit spheres of different dimensions. Indeed, we consider a two-parameter family$$\{d_{{{\text {GW}}}p,q}\}_{p,q=1}^{\infty }$$ { d GW p , q } p , q = 1 of Gromov–Wasserstein distances between metric measure spaces. By exploiting a suitable interaction between specific values of the parameterspandqand the metric of the underlying spaces, we are able to determine the exact value of the distance$$d_{{{\text {GW}}}4,2}$$ d GW 4 , 2 between all pairs of unit spheres of different dimensions endowed with their Euclidean distance and their uniform measure. 
    more » « less
  3. Abstract Optimal transport (OT) is a versatile framework for comparing probability measures, with many applications to statistics, machine learning and applied mathematics. However, OT distances suffer from computational and statistical scalability issues to high dimensions, which motivated the study of regularized OT methods like slicing, smoothing and entropic penalty. This work establishes a unified framework for deriving limit distributions of empirical regularized OT distances, semiparametric efficiency of the plug-in empirical estimator and bootstrap consistency. We apply the unified framework to provide a comprehensive statistical treatment of (i) average- and max-sliced $$p$$-Wasserstein distances, for which several gaps in existing literature are closed; (ii) smooth distances with compactly supported kernels, the analysis of which is motivated by computational considerations; and (iii) entropic OT, for which our method generalizes existing limit distribution results and establishes, for the first time, efficiency and bootstrap consistency. While our focus is on these three regularized OT distances as applications, the flexibility of the proposed framework renders it applicable to broad classes of functionals beyond these examples. 
    more » « less
  4. Abstract The seminal result of Benamou and Brenier provides a characterization of the Wasserstein distance as the path of the minimal action in the space of probability measures, where paths are solutions of the continuity equation and the action is the kinetic energy. Here we consider a fundamental modification of the framework where the paths are solutions of nonlocal (jump) continuity equations and the action is a nonlocal kinetic energy. The resulting nonlocal Wasserstein distances are relevant to fractional diffusions and Wasserstein distances on graphs. We characterize the basic properties of the distance and obtain sharp conditions on the (jump) kernel specifying the nonlocal transport that determine whether the topology metrized is the weak or the strong topology. A key result of the paper are the quantitative comparisons between the nonlocal and local Wasserstein distance. 
    more » « less
  5. The Gromov-Wasserstein (GW) formalism can be seen as a generalization of the optimal transport (OT) formalism for comparing two distributions associated with different metric spaces. It is a quadratic optimization problem and solving it usually has computational costs that can rise sharply if the problem size exceeds a few hundred points. Recently fast techniques based on entropy regularization have being developed to solve an approximation of the GW problem quickly. There are issues, however, with the numerical convergence of those regularized approximations to the true GW solution. To circumvent those issues, we introduce a novel strategy to solve the discrete GW problem using methods taken from statistical physics. We build a temperature-dependent free energy function that reflects the GW problem’s constraints. To account for possible differences of scales between the two metric spaces, we introduce a scaling factor s in the definition of the energy. From the extremum of the free energy, we derive a mapping between the two probability measures that are being compared, as well as a distance between those measures. This distance is equal to the GW distance when the temperature goes to zero. The optimal scaling factor itself is obtained by minimizing the free energy with respect to s. We illustrate our approach on the problem of comparing shapes defined by unstructured triangulations of their surfaces. We use several synthetic and “real life” datasets. We demonstrate the accuracy and automaticity of our approach in non-rigid registration of shapes. We provide numerical evidence that there is a strong correlation between the GW distances computed from low-resolution, surface-based representations of proteins and the analogous distances computed from atomistic models of the same proteins. 
    more » « less