skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on October 19, 2025

Title: Convolution Algebras of Double Groupoids and Strict 2-Groups

Double groupoids are a type of higher groupoid structure that can arise when one has two distinct groupoid products on the same set of arrows. A particularly important example of such structures is the irrational torus and, more generally, strict 2-groups. Groupoid structures give rise to convolution operations on the space of arrows. Therefore, a double groupoid comes equipped with two product operations on the space of functions. In this article we investigate in what sense these two convolution operations are compatible. We use the representation theory of compact Lie groups to get insight into a certain class of 2-groups.

 
more » « less
Award ID(s):
2137999
PAR ID:
10553600
Author(s) / Creator(s):
;
Corporate Creator(s):
;
Publisher / Repository:
SIGMA via arxiv.org
Date Published:
Journal Name:
Symmetry, Integrability and Geometry: Methods and Applications
ISSN:
1815-0659
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We prove that the homology groups of a principal ample groupoid vanish in dimensions greater than the dynamic asymptotic dimension of the groupoid (as a side‐effect of our methods, we also give a new model of groupoid homology in terms of the Tor groups of homological algebra, which might be of independent interest). As a consequence, the K‐theory of the ‐algebras associated with groupoids of finite dynamic asymptotic dimension can be computed from the homology of the underlying groupoid. In particular, principal ample groupoids with dynamic asymptotic dimension at most two and finitely generated second homology satisfy Matui's HK‐conjecture.

    We also construct explicit maps from the groupoid homology groups to the K‐theory groups of their ‐algebras in degrees zero and one, and investigate their properties.

     
    more » « less
  2. Abstract

    Given a Lie algebroid we discuss the existence of a smooth abelian integration of its abelianization. We show that the obstructions are related to the extended monodromy groups introduced recently in [9]. We also show that this groupoid can be obtained by a path-space construction, similar to the Weinstein groupoid of [6], but where the underlying homotopies are now supported in surfaces with arbitrary genus. As an application, we show that the prequantization condition for a (possibly non-simply connected) manifold is equivalent to the smoothness of an abelian integration. Our results can be interpreted as a generalization of the classical Hurewicz theorem.

     
    more » « less
  3. Abstract

    We study a model for the entanglement of a two-dimensional reflecting Brownian motion in a bounded region divided into two halves by a wall with three or more small windows. We map the Brownian motion into a Markov Chain on the fundamental groupoid of the region. We quantify entanglement of the path with the length of the appropriate element in this groupoid. Our main results are a law of large numbers and a central limit theorem for this quantity. The constants appearing in the limit theorems are expressed in terms of a coupled system of quadratic equations.

     
    more » « less
  4. Abstract When the reduced twisted $C^*$-algebra $C^*_r({\mathcal{G}}, c)$ of a non-principal groupoid ${\mathcal{G}}$ admits a Cartan subalgebra, Renault’s work on Cartan subalgebras implies the existence of another groupoid description of $C^*_r({\mathcal{G}}, c)$. In an earlier paper, joint with Reznikoff and Wright, we identified situations where such a Cartan subalgebra arises from a subgroupoid ${\mathcal{S}}$ of ${\mathcal{G}}$. In this paper, we study the relationship between the original groupoids ${\mathcal{S}}, {\mathcal{G}}$ and the Weyl groupoid and twist associated to the Cartan pair. We first identify the spectrum ${\mathfrak{B}}$ of the Cartan subalgebra $C^*_r({\mathcal{S}}, c)$. We then show that the quotient groupoid ${\mathcal{G}}/{\mathcal{S}}$ acts on ${\mathfrak{B}}$, and that the corresponding action groupoid is exactly the Weyl groupoid of the Cartan pair. Lastly, we show that if the quotient map ${\mathcal{G}}\to{\mathcal{G}}/{\mathcal{S}}$ admits a continuous section, then the Weyl twist is also given by an explicit continuous $2$-cocycle on ${\mathcal{G}}/{\mathcal{S}} \ltimes{\mathfrak{B}}$. 
    more » « less
  5. We use the Darboux coordinate representation found by two of the authors (L.Ch. and M.Sh.) for entries of general symplectic leaves of the A_n-groupoid of upper-triangular matrices to express roots of the characteristic equation det(A−λA^T)=0, with A∈A_n, in terms of Casimirs of this Darboux coordinate representation, which is based on cluster variables of Fock--Goncharov higher Teichmüller spaces for the algebra sl_n. We show that roots of the characteristic equation are simple monomials of cluster Casimir elements. This statement remains valid in the quantum case as well. We consider a generalization of A_n-groupoid to a A_{Sp_2m}-groupoid. 
    more » « less