skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Symbioses between fungi and bacteria: from mechanisms to impacts on biodiversity
Symbiotic interactions between fungi and bacteria range from positive to negative. They are ubiquitous in free-living as well as host-associated microbial communities worldwide. Yet, the impact of fungal-bacterial symbioses on the organization and dynamics of microbial communities is uncertain. There are two reasons for this uncertainty: (1) knowledge gaps in the understanding of the genetic mechanisms underpinning fungal-bacterial symbioses and (2) prevailing interpretations of ecological theory that favor antagonistic interactions as drivers stabilizing biological communities despite the existence of models emphasizing contributions of positive interactions. This review synthesizes information on fungal-bacterial symbioses common in the free-living microbial communities of the soil as well as in host-associated polymicrobial biofilms. The interdomain partnerships are considered in the context of the relevant community ecology models, which are discussed critically.  more » « less
Award ID(s):
2030338
PAR ID:
10553736
Author(s) / Creator(s):
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Current Opinion in Microbiology
Volume:
80
Issue:
C
ISSN:
1369-5274
Page Range / eLocation ID:
102496
Subject(s) / Keyword(s):
Biofilm community ecology effectors endosymbiotic bacteria dynamic modeling fungal highways fungivory hyphosphere innate immunity microbe-associated molecular patterns pattern recognition receptors secondary metabolites network analysis symbiosis
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Organisms inhabiting extreme environments must tolerate a variety of physiochemical stressors. In some cases, host‐associated microbial communities facilitate the survival of their hosts in extreme environments, but extremophile symbioses have not been identified in vertebrates. We used 16S rRNA amplicon sequencing to investigate commonalities and differences in the gut bacterial communities of livebearing fishes (Poecilia mexicanaspecies complex, Poeciliidae) that have repeatedly colonised toxic sulfide streams in southern Mexico. We found shared gut microbial taxa across habitat types and drainages but also differences in the microbiomes between sulfidic and nonsulfidic populations, both in terms of patterns of diversity and community composition. Most importantly, we documented convergent changes in microbiome composition across evolutionarily independent sulfide spring lineages. These patterns were consistent when we analysed the gut microbiomes as well as primarily host‐associated microbiomes that excluded taxa that are commonly found in the environment. Our analyses also revealed several microbial taxa associated with sulfide spring coloniation that have previously been implicated in symbioses and may influence the host's tolerance to the extreme environmental conditions. Our study sheds light on how shared environmental pressures can give rise to convergent host‐microbiome associations in fishes, and it provides a foundation for investigating the role of host‐microbiome interactions in vertebrate adaptation to extreme environments. 
    more » « less
  2. The structure of the leaf microbiome can alter host fitness and change in response to abiotic and biotic factors, like seasonality, climate, and leaf age. However, relatively few studies consider the influence of host age on microbial communities at a time scale of a few days, a short time scale relevant to microbes. To understand how host age modulates changes in the fungal and bacterial leaf microbiome on a short time scale, we ran independent field and greenhouse-based studies and characterized phyllosphere communities using next-generation sequencing approaches. Our field study characterized changes in the fungal and bacterial phyllosphere by examining leaves of different relative ages across individuals, whereas the greenhouse study examined changes in the fungal microbiome by absolute leaf age across individuals. Together, these results indicate that fungal communities are susceptible to change as a leaf ages as evidenced by shifts in the diversity of fungal taxa both in the field and the greenhouse. Similarly, there were increases in the diversity of fungal taxa by leaf age in the greenhouse. In bacterial communities in the field, we observed changes in the diversity, composition, and relative abundance of common taxa. These findings build upon previous literature characterizing host-associated communities at longer time scales and provide a foundation for targeted work examining how specific microbial taxa might interact with each other, such as fine-scale interactions between pathogenic and non-pathogenic species. 
    more » « less
  3. Summary Host‐associated microbiomes play an essential role in the health of organisms, including immune system activation, metabolism and energy uptake. It is well established that microbial communities differ depending on the life stage and natural history of the organism. However, the effects of life stage and natural history on microbial communities may also be influenced by human activities. We investigated the effects of amphibian life stage (terrestrial eft vs. aquatic adult) and proximity to roadways on newt skin bacterial communities. We found that the eft and adult life stages differed in bacterial community composition; however, the effects of roads on community composition were more evident in the terrestrial eft stage compared to the aquatic adult stage. Terrestrial efts sampled close to roads possessed richer communities than those living further away from the influence of roads. When accounting for amplicon sequence variants with predicted antifungal capabilities, in the adult life stage, we observed a decrease in anti‐fungal bacteria with distance to roads. In contrast, in the eft stage, we found an increase in anti‐fungal bacteria with distance to roads. Our results highlight the need to consider the effects of human activities when evaluating how host‐associated microbiomes differ across life stages of wildlife. 
    more » « less
  4. Microbial communities, and their ecological importance, have been investigated in several habitats. However, so far, most studies could not describe the closest microbial interactions and their functionalities. This study investigates the co-occurring interactions between fungi and bacteria in plant rhizoplanes and their potential functions. The partnerships were obtained using fungal-highway columns with four plant-based media. The fungi and associated microbiomes isolated from the columns were identified by sequencing the ITS (fungi) and 16S rRNA genes (bacteria). Statistical analyses including Exploratory Graph and Network Analysis were used to visualize the presence of underlying clusters in the microbial communities and evaluate the metabolic functions associated with the fungal microbiome (PICRUSt2). Our findings characterize the presence of both unique and complex bacterial communities associated with different fungi. The results showed that Bacillus was associated as exo-bacteria in 80 % of the fungi but occurred as putative endo-bacteria in 15 %. A shared core of putative endo-bacterial genera, potentially involved in the nitrogen cycle was found in 80 % of the isolated fungi. The comparison of potential metabolic functions of the putative endo- and exo-communities highlighted the potential essential factors to establish an endosymbiotic relationship, such as the loss of pathways associated with metabolites obtained from the host while maintaining pathways responsible for bacterial survival within the hypha. 
    more » « less
  5. Abstract Marine microorganisms are drivers of biogeochemical cycles in the world’s oceans, including oxygen minimum zones (OMZs). Using a metabarcoding survey of the 16S rRNA gene, we investigated prokaryotic communities, as well as their potential interactions with fungi, at the coastal, offshore, and peripheral OMZ of the eastern tropical North Pacific. Water samples were collected along a vertical oxygen gradient, and large volumes were filtered through three size fractions, 0.22, 2, and 22 µm. The changes in community composition along the oxygen gradient were driven by Planctomycetota, Bacteroidota, Verrucomicrobiota, and Gammaproteobacteria; most are known degraders of marine polysaccharides and usually associated with the large particle-associated (LPA) community. The relative abundance of Nitrososphaerota, Alphaproteobacteria, Actinomycetota, and Nitrospinota was high in free-living and small particle-associated (SPA) communities. Network analyses identified putative interactions between fungi and prokaryotes in the particle-associated fractions, which have been largely overlooked in the ocean. In the SPAnetwork analysis, fungal amplicon sequence variants (ASVs) had exclusively negative connections with SAR11 nodes. In the LPA network analysis, fungal ASVs displayed both negative and positive connections with Pseudomonadota, SAR324, and Thermoplasmatota. Our findings demonstrate the utility of three-stage size-fractioned filtration in providing novel insights into marine microbial ecology. 
    more » « less