skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Earth System Model Analysis of How Astronomical Forcing Is Imprinted Onto the Marine Geological Record: The Role of the Inorganic (Carbonate) Carbon Cycle and Feedbacks
Abstract Astronomical cycles are strongly expressed in marine geological records, providing important insights into Earth system dynamics and an invaluable means of constructing age models. However, how various astronomical periods are filtered by the Earth system and the mechanisms by which carbon reservoirs and climate components respond, particularly in absence of dynamic ice sheets, is unclear. Using an Earth system model that includes feedbacks between climate, ocean circulation, and inorganic (carbonate) carbon cycling relevant to geological timescales, we systematically explore the impact of astronomically‐modulated insolation forcing and its expression in model variables most comparable to key paleoceanographic proxies (temperature, the δ13C of inorganic carbon, and sedimentary carbonate content). Temperature predominately responds to obliquity and is little influenced by the modeled carbon cycle feedbacks. In contrast, the cycling of nutrients and carbon in the ocean generates significant precession power in atmospheric CO2, benthic ocean δ13C, and sedimentary wt% CaCO3, while inclusion of marine sedimentary and weathering processes shifts power to the long eccentricity period. Our simulations produce reducedpCO2and dissolved inorganic carbon δ13C at long eccentricity maxima and, contrary to early Cenozoic marine records, CaCO3preservation in the model is enhanced during eccentricity modulated warmth. Additionally, the magnitude of δ13C variability simulated in our model underestimates marine proxy records. These model‐data discrepancies hint at the possibility that the Paleogene silicate weathering feedback was weaker than modeled here and that additional organic carbon cycle feedbacks are necessary to explain the full response of the Earth system to astronomical forcing.  more » « less
Award ID(s):
2244897
PAR ID:
10553746
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Paleoceanography and Paleoclimatology
Date Published:
Journal Name:
Paleoceanography and Paleoclimatology
Volume:
39
Issue:
3
ISSN:
2572-4517
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Multiple abrupt warming events (“hyperthermals”) punctuated the Early Eocene and were associated with deep-sea temperature increases of 2 to 4 °C, seafloor carbonate dissolution, and negative carbon isotope (δ13C) excursions. Whether hyperthermals were associated with changes in the global ocean overturning circulation is important for understanding their driving mechanisms and feedbacks and for gaining insight into the circulation’s sensitivity to climatic warming. Here, we present high-resolution benthic foraminiferal stable isotope records (δ13C and δ18O) throughout the Early Eocene Climate Optimum (~53.26 to 49.14 Ma) from the deep equatorial and North Atlantic. Combined with existing records from the South Atlantic and Pacific, these indicate consistently amplified δ13C excursion sizes during hyperthermals in the deep equatorial Atlantic. We compare these observations with results from an intermediate complexity Earth system model to demonstrate that this spatial pattern of δ13C excursion size is a predictable consequence of global warming-induced changes in ocean overturning circulation. In our model, transient warming drives the weakening of Southern Ocean-sourced overturning circulation, strengthens Atlantic meridional water mass aging gradients, and amplifies the magnitude of negative δ13C excursions in the equatorial to North Atlantic. Based on model-data consistency, we conclude that Eocene hyperthermals coincided with repeated weakening of the global overturning circulation. Not accounting for ocean circulation impacts on δ13C excursions will lead to incorrect estimates of the magnitude of carbon release driving hyperthermals. Our finding of weakening overturning in response to past transient climatic warming is consistent with predictions of declining Atlantic Ocean overturning strength in our warm future. 
    more » « less
  2. Abstract The Smithian–Spathian boundary interval is characterised by a positive carbon isotopic excursion in both δ13Ccarband δ13Corg, concurrent with a major marine ecosystem reorganisation and the resurgence of microbialite facies. While these δ13C records have been traditionally interpreted as capturing global carbon cycle behaviour, recent studies have suggested that at least some excursions in early Triassic δ13C values may incorporate influences from authigenic or early diagenetic processes. To examine the mechanistic drivers of Smithian–Spathian boundary geochemistry, the carbonate geochemistry of a core from Georgetown, Idaho (USA), was analysed using a coupled δ44/40Ca, δ26Mg and trace‐metal framework. While the δ13C record in the Georgetown core is broadly similar to other Smithian–Spathian boundary sections, portions of the record coincide with substantial shifts in δ44/40Ca, δ26Mg and trace‐metal compositions that cannot feasibly be interpreted as primary. Furthermore, these geochemical variations correspond with lithology: The δ13C record is modulated by variations in the extent of dolomitisation, and the diagenetic styles recognised here coincide with individual lithostratigraphic units. A primary shift in local sea water δ13C values is inferred from the most geochemically unaltered strata, fromca3‰ in the middle Smithian toca5‰ in the early Spathian, although the timing and pathway through which this occurs cannot be readily identified nor extrapolated globally. Therefore, the Georgetown core may not directly record exogenic carbon cycle evolution, showing that there is a need for the careful reconsideration of the Smithian–Spathian boundary—and more broadly, Early Triassic—geochemical records to examine potential local and diagenetic influences on sedimentary geochemistry. 
    more » « less
  3. Marine δ18O data reveal astronomical forcing of the climate and cryosphere during the Miocene, when atmosphericPco2was on par with emissions scenarios over the next century. This inspired hypotheses for how Milankovitch cycles, ice-ocean interactions, and greenhouse gases influence ice volume. Mass balance controls for marine and terrestrial ice sheets differ, and proxy data collected far from Antarctica provide valuable but limited insight into regional processes. We evaluate clast abundance data from Antarctic marine sedimentary records, observing a strong signal of eccentricity and precession coincident with a terrestrial ice sheet and a clear obliquity signal at the margins of a marine ice sheet. These analyses are integrated with a synthesis of proxy data, and we argue that high variance in obliquity forcing (mediated and enhanced by the ocean and atmosphere) can inhibit ice sheet growth, even when insolation forcing is conducive to glaciation. This “obliquity disruption” explains cryosphere variability before the existence of large northern hemisphere ice sheets. 
    more » « less
  4. Abstract Geologic records support a short-lived carbon release, known as the pre-onset excursion (POE), shortly before the Paleocene-Eocene Thermal Maximum (PETM; ~ 56 Ma). However, the source and pace of the POE carbon release and its relationship to the PETM remain unresolved. Here we show a high-temporal-resolution stratigraphic record spanning the POE and PETM from the eastern Tethys Ocean that documents the evolution of surface ocean carbon cycle, redox and eutrophication, confirming the global nature of the POE. Biomarkers extracted from the sedimentary record indicate a smaller environmental perturbation during the POE than that during the PETM in the eastern Tethys Ocean. Earth system modeling constrained by observed δ13C and pH data indicates that the POE was driven by a largely thermogenic CO2source, likely associated with sill intrusions prior to the main eruption phase of the North Atlantic Igneous Province and possibly biogeochemical feedbacks involving the release of biogenic methane. 
    more » « less
  5. Estimates of sedimentary organic carbon burial fluxes based on inventory and isotope mass balance methods have been divergent. A new calculation of the isotope mass balance using a revised assessment of the inputs to the ocean-atmosphere system resolves the apparent discrepancy. Inputs include weathering of carbonate and old kerogen, geogenic methane oxidation, and volcanic and metamorphic degassing. Volcanic and metamorphic degassing comprise ≈23% of the total C input. Inputs from isotopically lightOCpetroandCH4-geodrive the mean δ13C of the input to =−8.0 ± 1.9‰, notably lower than the commonly assumed volcanic degassing value. The isotope mass balance model yields a modern burial flux =15.9 ± 6.6 Tmol y−1. The impact of the mid-Miocene Climatic Optimum isotope anomaly is an integrated excess deposition ≈ 4.3 × 106Tmol between 18 and 11 Ma, which is both longer and larger than estimates for the total degassing by the Columbia River Basalt eruptions, implying a complex carbon system response to large eruptive events. Monte Carlo evaluation finds that late Cenozoic net growth of the carbonate reservoir is very likely while net growth of theCorgreservoir is less certain but more likely than not. At present, subduction does not appear to keep up with net sedimentation and the overall masses of sedimentary carbonate and organic carbon are likely increasing. Growth in the sedimentaryCorgreservoir implies oxidation of the surface environment and likely increases in atmospheric pO2
    more » « less