skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dynamics of Nonlinear Optical Losses in Silicon‐Rich Nitride Nano‐Waveguides
Free carrier absorption (FCA) is established to be the cause of nonlinear losses in plasma‐enhanced chemical vapor deposition (PECVD) silicon‐rich nitride (SRN) waveguides. To validate this hypothesis, a photo‐induced current is measured in SRN thin films with refractive indices varying between 2.5 and 3.15 when a C‐band laser light is illuminating the SRN films at various powers, indicating the generation of free carriers. Furthermore, nonlinear loss dynamics is, for the first time, measured and characterized in detail in SRN waveguides by utilizing high peak power C‐band complex shape optical pulses for estimation of free carrier generation (FCG) and free carrier recombination (FCR) lifetimes and their dynamics. Both FCG and FCR are found to decrease with an increase in the refractive index of SRN, and, specifically, the FCR lifetimes are found (92 ± 7) ns, (39 ± 3) ns, and (31 ± 2) ns for the SRN indices of 2.7, 3, and 3.15, respectively. Lastly, nonlinear losses in high refractive index SRN waveguides are demonstrated to be minimized and altogether avoided when the pulse duration reduced below the free carrier generation lifetime, thus providing a way of taking a full advantage of the large inherent SRN nonlinear properties.  more » « less
Award ID(s):
2023730 2217453
PAR ID:
10553806
Author(s) / Creator(s):
; ;
Corporate Creator(s):
Editor(s):
Wecker, Anja; Panarina, Nadezda
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Advanced Optical Materials
Edition / Version:
1
Volume:
2401299
Issue:
1
ISSN:
2195-1071
Page Range / eLocation ID:
1-12
Subject(s) / Keyword(s):
free carrier absorption, integrated photonics, nonlinear optical losses, photo-induced current, silicon nitride
Format(s):
Medium: X Size: 2 MB Other: xis
Size(s):
2 MB
Sponsoring Org:
National Science Foundation
More Like this
  1. Wecker, Anja; Panarina, Nadezda (Ed.)
    Silicon nitride is widely used in integrated photonics for optical nonlinear wave mixing due to its low optical losses combined with relatively high nonlinear optical properties and a wide‐range transparency window. It is known that a higher concentration of Si in silicon‐rich nitride (SRN) magnifies both the nonlinear response and optical losses, including nonlinear losses. To address the trade‐off, four‐wave mixing (FWM) is implemented in over a hundred SRN waveguides prepared by plasma‐enhanced chemical vapor deposition in a wide range of SRN refractive indices varying between 2.5 and 3.2 (measured in the C‐band). It is determined that SRN with a refractive index of about 3 maximizes the FWM efficiency for continuous‐wave operation, indicating that the refractive index of SRN is indeed a crucial optimization parameter for nonlinear optics applications. The FWM efficiency is limited by large nonlinear optical losses observed in SRN waveguides with indices larger than 2.7, which are not related to two‐photon absorption. Finally, the third‐order susceptibility and the nonlinear refractive index are estimated for multiple SRN refractive indices, and, specifically, the nonlinearities as large as and are estimated in a waveguide with an SRN refractive index of 3.2. 
    more » « less
  2. Abstract Phase‐sensitive integrated photonic devices are highly susceptible to minor manufacturing deviations, resulting in significant performance inconsistencies. This variability has limited the scalability and widespread adoption of these devices. Here, a major advancement is achieved through continuous‐wave (CW) visible light (405 and 520 nm) trimming of plasma‐enhanced chemical vapor deposition (PECVD) silicon‐rich nitride (SRN) waveguides. The demonstrated method achieves precise, bidirectional refractive index tuning with a single laser source in CMOS‐compatible SRN samples with refractive indices of 2.4 and 2.9 (measured at 1550 nm). By utilizing a cost‐effective setup for real‐time resonance tracking in micro‐ring resonators, the resonant wavelength shifts as fine as 10 pm are attained. Additionally, a record red shift of 49.1 nm and a substantial blue shift of 10.6 nm are demonstrated, corresponding to refractive index changes of approximately 0.11 and −2 × 10−2. The blue and red shifts are both conclusively attributed to thermal annealing. These results highlight SRN's exceptional capability for permanent optical tuning, establishing a foundation for stable, precisely controlled performance in phase‐sensitive integrated photonic devices. 
    more » « less
  3. Abstract Applications in soft, flexible optical, and optoelectronic applications demand polymer thin film coatings that can accommodate substantial physical deformations. The preparation of high refractive index polymers (HRIPs) through the quaternization of poly(4‐vinylpyridine) (P4VP) thin films with (di)halomethanes is presented. P4VP thin films are prepared by initiated chemical vapor deposition (iCVD) and then quaternized through exposure to saturated vapors of iodomethane (CH3I), dibromomethane (CH2Br2), and diiodomethane (CH2I2), resulting in refractive indices (RI) as high as 1.67, 1.71, and 2.07, respectively (at 632.8 nm). Fourier‐transform infrared (FTIR) spectroscopy and X‐ray photoelectron spectroscopy (XPS) confirmed the quaternization of pyridine pendant groups on the polymer chain to n‐methylpyridinium with primarily an iodide or bromide counterion, though a minor fraction of polyiodides are also detected. Additionally, these films demonstrate superior thermal stability, retaining their refractive index and thickness after thermal excursions to 200 °C. The halogenated P4VP films exhibit superior mechanical flexibility relative to conventional inorganic coatings (Al2O3and Ta2O5) and do not fracture at uniaxial tensile strains as high as 10%. This new material chemistry and fabrication approach method may enable advanced optical designs and functionality in a wide range of substrates and device architectures. 
    more » « less
  4. Abstract In high fluence applications of lead halide perovskites for light-emitting diodes and lasers, multi-polaron interactions and associated Auger recombination limit the device performance. However, the relationship of the ultrafast and strongly lattice coupled carrier dynamics to nanoscale heterogeneities has remained elusive. Here, in ultrafast visible-pump infrared-probe nano-imaging of the photoinduced carrier dynamics in triple cation perovskite films, a ~20 % variation in sub-ns relaxation dynamics with spatial disorder on tens to hundreds of nanometer is resolved. We attribute the non-uniform relaxation dynamics to the heterogeneous evolution of polaron delocalization and increasing scattering time. The initial high-density excitation results in faster relaxation due to strong many-body interactions, followed by extended carrier lifetimes at lower densities. These results point towards the missing link between the optoelectronic heterogeneity and associated carrier dynamics to guide synthesis and device engineering for improved perovskites device performance. 
    more » « less
  5. We present a study of optical bi-stability in a 3.02 refractive index at 1550nm plasma enhanced chemical vapor deposition (PECVD) silicon-rich nitride (SRN) film, as it pertains to bi-stable switching, memory applications, and thermal sensing applications. In this work we utilize an SRN ring resonator device, which we first characterize at low-power and then compare thermo-optic coefficients, (2.12 ± 0.125) × 10 −4 /°C, obtained from thermal-heating induced resonance shifts to optically induced resonance shifts as well as estimated propagation loss and absorption. We then measure the time response of this nonlinearity demonstrating the relaxation time to be 18.7 us, indicating the mechanism to be thermal in nature. Finally, we demonstrate bi-stable optical switching. 
    more » « less