Microorganisms encode proteins that function in the transformations of useful and harmful nitrogenous compounds in the global nitrogen cycle. The major transformations in the nitrogen cycle are nitrogen fixation, nitrification, denitrification, anaerobic ammonium oxidation, and ammonification. The focus of this report is the complex biogeochemical process of denitrification, which, in the complete form, consists of a series of four enzyme-catalyzed reduction reactions that transforms nitrate to nitrogen gas. Denitrification is a microbial strain-level ecological trait (characteristic), and denitrification potential (functional performance) can be inferred from trait rules that rely on the presence or absence of genes for denitrifying enzymes in microbial genomes. Despite the global significance of denitrification and associated large-scale genomic and scholarly data sources, there is lack of datasets and interactive computational tools for investigating microbial genomes according to denitrification trait rules. Therefore, our goal is to categorize archaeal and bacterial genomes by denitrification potential based on denitrification traits defined by rules of enzyme involvement in the denitrification reduction steps. We report the integration of datasets on genome, taxonomic lineage, ecosystem, and denitrifying enzymes to provide data investigations context for the denitrification potential of microbial strains. We constructed an ecosystem and taxonomic annotated denitrification potential dataset of 62,624 microbial genomes (866 archaea and 61,758 bacteria) that encode at least one of the twelve denitrifying enzymes in the four-step canonical denitrification pathway. Our four-digit binary-coding scheme categorized the microbial genomes to one of sixteen denitrification traits including complete denitrification traits assigned to 3280 genomes from 260 bacteria genera. The bacterial strains with complete denitrification potential pattern included Arcobacteraceae strains isolated or detected in diverse ecosystems including aquatic, human, plant, and Mollusca (shellfish). The dataset on microbial denitrification potential and associated interactive data investigations tools can serve as research resources for understanding the biochemical, molecular, and physiological aspects of microbial denitrification, among others. The microbial denitrification data resources produced in our research can also be useful for identifying microbial strains for synthetic denitrifying communities.
Microbial culture collections play a crucial role in the collection, maintenance, and distribution of quality-assured living microbial strains, along with their associated phenotypic and omics data. To enhance the find-able, accessible, interoperable, and re-usable (FAIR) data utilization of microbial resources, the World Data Center for Microorganisms (WDCM) has developed the Global Catalogue of Microorganisms (GCM) and the Global Catalogue of Type Strains (gcType). These platforms provide interactive interfaces for cataloging the holdings of collections, along with detailed annotations of type strain genomes and curated metadata, including ecosystems, growth conditions, and collection locations. The system maximizes the scientific impact of microbial resources and culture collections through an integrated data mining tool that links strain- and species-related information from various public resources. Currently, the GCM and gcType include 574 422 strains from 154 culture collections across 51 countries and regions, along with 25 980 genomes from type species. Additionally, 2 702 655 articles and 103 337 patents are integrated with these microbial resources. The system supports microbial taxonomic research and provides evidence for implementing the Nagoya Protocol in the field of microbial resources and their digital sequence information (DSI). Access is freely available at gcm.wdcm.org and gctype.wdcm.org.
more » « less- PAR ID:
- 10553885
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Nucleic Acids Research
- Volume:
- 53
- Issue:
- D1
- ISSN:
- 0305-1048
- Format(s):
- Medium: X Size: p. D763-D771
- Size(s):
- p. D763-D771
- Sponsoring Org:
- National Science Foundation
More Like this
-
Brozel, Volker (Ed.)
-
Abstract The CHAB-I-5 cluster is a pelagic lineage that can comprise a significant proportion of all roseobacters in surface oceans and have predicted roles in biogeochemical cycling via heterotrophy, aerobic anoxygenic photosynthesis (AAnP), CO oxidation, DMSP degradation, and other metabolisms. Though cultures of CHAB-I-5 have been reported, none have been explored and the best known representative, strain SB2, was lost from culture after obtaining the genome sequence. We have isolated two new CHAB-I-5 representatives, strains US3C007 and FZCC0083, and assembled complete, circularized genomes with 98.7% and 92.5% average nucleotide identities with the SB2 genome. Comparison of these three with 49 other unique CHAB-I-5 metagenome-assembled and single-cell genomes indicated that the cluster represents a genus with two species, and we identified subtle differences in genomic content between the two species subclusters. Metagenomic recruitment from over fourteen hundred samples expanded their known global distribution and highlighted both isolated strains as representative members of the clade. FZCC0083 grew over twice as fast as US3C007 and over a wider range of temperatures. The axenic culture of US3C007 occurs as pleomorphic cells with most exhibiting a coccobacillus/vibrioid shape. We propose the name
Thalassovivens spotae , gen nov., sp. nov. for the type strain US3C007T. -
Cao, Yi (Ed.)Raphidocelis subcapitata is one of the most frequently used species for algal growth inhibition tests. Accordingly, many microalgal culture collections worldwide maintain R . subcapitata for distribution to users. All R . subcapitata strains maintained in these collections are derived from the same cultured strain, NIVA-CHL1. However, considering that 61 years have passed since this strain was isolated, we suspected that NIVA-CHL1 in culture collections might have acquired various mutations. In this study, we compared the genome sequences among NIVA-CHL1 from 8 microalgal culture collections and one laboratory in Japan to evaluate the presence of mutations. We found single-nucleotide polymorphisms or indels at 19,576 to 28,212 sites per strain in comparison with the genome sequence of R . subcapitata NIES-35, maintained at the National Institute for Environmental Studies, Tsukuba, Japan. These mutations were detected not only in non-coding but also in coding regions; some of the latter mutations may affect protein function. In growth inhibition test with 3,5-dichlorophenol, EC50 values varied 2.6-fold among the 9 strains. In the ATCC 22662–2 and CCAP 278/4 strains, we also detected a mutation in the gene encoding small-conductance mechanosensitive ion channel, which may lead to protein truncation and loss of function. Growth inhibition test with sodium chloride suggested that osmotic regulation has changed in ATCC 22662–2 and CCAP 278/4 in comparison with NIES-35.more » « less
-
Pritchard, Leighton (Ed.)
We report the genome of
Rhodococcus opacus strain MoAcy1 (DSM 44186 ), an aerobic soil isolate capable of using acetylene as its primary carbon and energy source (acetylenotrophy). The genome is composed of a single circular chromosome of ∼8 Mbp and two closed plasmids, with a G+C content of 67.3%. -
Abstract Understanding the complex growth and metabolic dynamics in microorganisms requires advanced kinetic models containing both metabolic reactions and enzymatic regulation to predict phenotypic behaviors under different conditions and perturbations. Most current kinetic models lack gene expression dynamics and are separately calibrated to distinct media, which consequently makes them unable to account for genetic perturbations or multiple substrates. This challenge limits our ability to gain a comprehensive understanding of microbial processes towards advanced metabolic optimizations that are desired for many biotechnology applications. Here, we present an integrated computational and experimental approach for the development and optimization of mechanistic kinetic models for microbial growth and metabolic and enzymatic dynamics. Our approach integrates growth dynamics, gene expression, protein secretion, and gene‐deletion phenotypes. We applied this methodology to build a dynamic model of the growth kinetics in batch culture of the bacterium
Cellvibrio japonicus grown using either cellobiose or glucose media. The model parameters were inferred from an experimental data set using an evolutionary computation method. The resulting model was able to explain the growth dynamics ofC. japonicus using either cellobiose or glucose media and was also able to accurately predict the metabolite concentrations in the wild‐type strain as well as in β‐glucosidase gene deletion mutant strains. We validated the model by correctly predicting the non‐diauxic growth and metabolite consumptions of the wild‐type strain in a mixed medium containing both cellobiose and glucose, made further predictions of mutant strains growth phenotypes when using cellobiose and glucose media, and demonstrated the utility of the model for designing industrially‐useful strains. Importantly, the model is able to explain the role of the different β‐glucosidases and their behavior under genetic perturbations. This integrated approach can be extended to other metabolic pathways to produce mechanistic models for the comprehensive understanding of enzymatic functions in multiple substrates.