skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Title: Extractors for Polynomial Sources over 𝔽₂
We explicitly construct the first nontrivial extractors for degree d ≥ 2 polynomial sources over 𝔽₂. Our extractor requires min-entropy k ≥ n - (√{log n})/((log log n / d)^{d/2}). Previously, no constructions were known, even for min-entropy k ≥ n-1. A key ingredient in our construction is an input reduction lemma, which allows us to assume that any polynomial source with min-entropy k can be generated by O(k) uniformly random bits. We also provide strong formal evidence that polynomial sources are unusually challenging to extract from, by showing that even our most powerful general purpose extractors cannot handle polynomial sources with min-entropy below k ≥ n-o(n). In more detail, we show that sumset extractors cannot even disperse from degree 2 polynomial sources with min-entropy k ≥ n-O(n/log log n). In fact, this impossibility result even holds for a more specialized family of sources that we introduce, called polynomial non-oblivious bit-fixing (NOBF) sources. Polynomial NOBF sources are a natural new family of algebraic sources that lie at the intersection of polynomial and variety sources, and thus our impossibility result applies to both of these classical settings. This is especially surprising, since we do have variety extractors that slightly beat this barrier - implying that sumset extractors are not a panacea in the world of seedless extraction.  more » « less
Award ID(s):
2045576
PAR ID:
10553900
Author(s) / Creator(s):
; ;
Editor(s):
Guruswami, Venkatesan
Publisher / Repository:
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
Date Published:
Volume:
287
ISSN:
1868-8969
ISBN:
978-3-95977-309-6
Page Range / eLocation ID:
287-287
Subject(s) / Keyword(s):
Extractors low-degree polynomials varieties sumset extractors Theory of computation → Expander graphs and randomness extractors
Format(s):
Medium: X Size: 24 pages; 913462 bytes Other: application/pdf
Size(s):
24 pages 913462 bytes
Right(s):
Creative Commons Attribution 4.0 International license; info:eu-repo/semantics/openAccess
Sponsoring Org:
National Science Foundation
More Like this
  1. A long line of work in the past two decades or so established close connections between several different pseudorandom objects and applications, including seeded or seedless non-malleable extractors, two source extractors, (bipartite) Ramsey graphs, privacy amplification protocols with an active adversary, non-malleable codes and many more. These connections essentially show that an asymptotically optimal construction of one central object will lead to asymptotically optimal solutions to all the others. However, despite considerable effort, previous works can get close but still lack one final step to achieve truly asymptotically optimal constructions. In this paper we provide the last missing link, thus simultaneously achieving explicit, asymptotically optimal constructions and solutions for various well studied extractors and applications, that have been the subjects of long lines of research. Our results include: 1. Asymptotically optimal seeded non-malleable extractors, which in turn give two source extractors for asymptotically optimal min-entropy of $$O(\log n)$$, explicit constructions of $$K$$-Ramsey graphs on $$N$$ vertices with $$K=\log^{O(1)} N$$, and truly optimal privacy amplification protocols with an active adversary. 2. Two source non-malleable extractors and affine non-malleable extractors for some linear min-entropy with exponentially small error, which in turn give the first explicit construction of non-malleable codes against $$2$$-split state tampering and affine tampering with constant rate and \emph{exponentially} small error. 3. Explicit extractors for affine sources, sumset sources, interleaved sources, and small space sources that achieve asymptotically optimal min-entropy of $$O(\log n)$ or $$2s+O(\log n)$$ (for space $$s$$ sources). 4. An explicit function that requires strongly linear read once branching programs of size $$2^{n-O(\log n)}$$, which is optimal up to the constant in $$O(\cdot)$$. Previously, even for standard read once branching programs, the best known size lower bound for an explicit function is $$2^{n-O(\log^2 n)}$$. 
    more » « less
  2. Bojanczyk, Mikolaj; Merelli, Emanuela; Woodruff, David P. (Ed.)
    We continue a line of work on extracting random bits from weak sources that are generated by simple processes. We focus on the model of locally samplable sources, where each bit in the source depends on a small number of (hidden) uniformly random input bits. Also known as local sources, this model was introduced by De and Watson (TOCT 2012) and Viola (SICOMP 2014), and is closely related to sources generated by AC⁰ circuits and bounded-width branching programs. In particular, extractors for local sources also work for sources generated by these classical computational models. Despite being introduced a decade ago, little progress has been made on improving the entropy requirement for extracting from local sources. The current best explicit extractors require entropy n^{1/2}, and follow via a reduction to affine extractors. To start, we prove a barrier showing that one cannot hope to improve this entropy requirement via a black-box reduction of this form. In particular, new techniques are needed. In our main result, we seek to answer whether low-degree polynomials (over 𝔽₂) hold potential for breaking this barrier. We answer this question in the positive, and fully characterize the power of low-degree polynomials as extractors for local sources. More precisely, we show that a random degree r polynomial is a low-error extractor for n-bit local sources with min-entropy Ω(r(nlog n)^{1/r}), and we show that this is tight. Our result leverages several new ingredients, which may be of independent interest. Our existential result relies on a new reduction from local sources to a more structured family, known as local non-oblivious bit-fixing sources. To show its tightness, we prove a "local version" of a structural result by Cohen and Tal (RANDOM 2015), which relies on a new "low-weight" Chevalley-Warning theorem. 
    more » « less
  3. Ta-Shma, Amnon (Ed.)
    In a recent work, Gryaznov, Pudlák and Talebanfard (CCC '22) introduced a linear variant of read-once branching programs, with motivations from circuit and proof complexity. Such a read-once linear branching program is a branching program where each node is allowed to make 𝔽₂-linear queries, and is read-once in the sense that the queries on each path is linearly independent. As their main result, they constructed an explicit function with average-case complexity 2^{n/3-o(n)} against a slightly restricted model, which they call strongly read-once linear branching programs. The main tool in their lower bound result is a new type of extractor, called directional affine extractors, that they introduced. Our main result is an explicit function with 2^{n-o(n)} average-case complexity against the strongly read-once linear branching program model, which is almost optimal. This result is based on a new connection from this problem to sumset extractors, which is a randomness extractor model introduced by Chattopadhyay and Li (STOC '16) as a generalization of many other well-studied models including two-source extractors, affine extractors and small-space extractors. With this new connection, our lower bound naturally follows from a recent construction of sumset extractors by Chattopadhyay and Liao (STOC '22). In addition, we show that directional affine extractors imply sumset extractors in a restricted setting. We observe that such restricted sumset sources are enough to derive lower bounds, and obtain an arguably more modular proof of the lower bound by Gryaznov, Pudlák and Talebanfard. We also initiate a study of pseudorandomness against linear branching programs. Our main result here is a hitting set generator construction against regular linear branching programs with constant width. We derive this result based on a connection to Kakeya sets over finite fields. 
    more » « less
  4. We construct explicit deterministic extractors for polynomial images of varieties, that is, distributions sampled by applying a low-degree polynomial map 𝑓 to an element sampled uniformly at random from a 𝑘-dimensional variety 𝑉. This class of sources generalizes both polynomial sources, studied by Dvir, Gabizon and Wigderson (FOCS 2007, Comput. Complex. 2009), and variety sources, studied by Dvir (CCC 2009, Comput. Complex. 2012). Assuming certain natural non-degeneracy conditions on the map 𝑓 and the variety 𝑉 , which in particular ensure that the source has enough min-entropy, we extract almost all the min-entropy of the distribution. Unlike the Dvir–Gabizon–Wigderson and Dvir results, our construction works over large enough finite fields of arbitrary characteristic. One key part of our construction is an improved deterministic rank extractor for varieties. As a by-product, we obtain explicit Noether normalization lemmas for affine varieties and affine algebras. Additionally, we generalize a construction of affine extractors with exponentially small error due to Bourgain, Dvir and Leeman (Comput. Complex. 2016) by extending it to all finite prime fields of quasipolynomial size. 
    more » « less
  5. Non-malleable Codes give us the following property: their codewords cannot be tampered into codewords of related messages. Privacy Amplification allows parties to convert their weak shared secret into a fully hidden, uniformly distributed secret key, while communicating on a fully tamperable public channel. In this work, we show how to construct a constant round privacy amplification protocol from any augmented split-state non-malleable code. Existentially, this gives us another primitive (in addition to optimal non-malleable extractors) whose optimal construction would solve the long-standing open problem of building constant round privacy amplification with optimal entropy loss. Instantiating our code with the current best known NMC gives us an 8-round privacy amplification protocol with entropy loss O(log(n)+κlog(κ)) and min-entropy requirement Ω(log(n)+κlog(κ)), where κ is the security parameter and n is the length of the shared weak secret. In fact, for our result, even the weaker primitive of Non-malleable Randomness Encoders suffice. We view our result as an exciting connection between two of the most fascinating and well-studied information theoretic primitives, non-malleable codes and privacy amplification. 
    more » « less