IntroductionThis article investigates an early STEM family engagement program offered during the pre-kindergarten (pre-k) year. Pre-k is an important juncture for community organizations to support children’s STEM engagement and parental involvement in informal STEM learning. We evaluated a program called Teaching Together STEM, which offers a series of museum outreach and family events at schools with the aim of broadening access to early STEM for children experiencing poverty. We replicated program content previously delivered using in-person events but shifted to a hybrid delivery approach that combined two virtual and two in-person events with linguistically diverse families of 3- and 4-year-olds. We evaluated whether attending events improved parent outcomes, such as involvement in STEM activities at home, and child outcomes, such as engagement in a STEM task. MethodsThe analytic sample included 59 families—35 randomly assigned families took part in the treatment and 24 families were assigned to a waitlist control group. Developed in Spanish and English, the informal STEM program was hosted by local children’s museum educators for 21 pre-k classrooms using these components: (a) a series of four family education “funshops;” (b) parent tips and reminders via text message; (c) nine thematically related, take-home STEM extension activity kits; and (d) a family museum field trip for each school, as well as individual family museum passes. ResultsThere were no significant impacts on primary outcomes of parent involvement (effect size [ES] = −0.03) or child STEM engagement/enthusiasm (ES = −0.73). There were improvements in some aspects of parents’ STEM attitudes (e.g., math expectancy ES = 0.58), but other distal parent and child outcomes were not significantly changed. DiscussionThe hybrid delivery approach showed promise in terms of attendance and parent satisfaction but likely was not intensive enough to increase parent involvement. We discuss implications for other community-based family engagement programs focused on broadening participation in informal STEM.
more »
« less
The intersection of parent questions, child skills, and activity context in informal science, technology, engineering, and math learning
Adult verbal input occurs frequently during parent–child interactions. However, few studies have considered how parent language varies across informal STEM (science, technology, engineering, and math) activities. In this study, we examined how open and closed parent questions (a) differed across three STEM activities and (b) related to math, science, and vocabulary knowledge in their preschool-aged children. A total of 173 parents and their preschool children (Mage = 4 years) from lower socioeconomic households were video-recorded participating in three STEM-related activities: (a) a pretend grocery store activity, (b) a bridge-building challenge, and (c) a book read about a science topic. Parent questions were categorized as open or closed according to the presence of key question terms. Results indicate that the three activities elicited different frequencies of parent open and closed questions, with the grocery store activity containing the most open and closed questions. Children’s science knowledge was predicted by the frequency and proportion of parent open questions during the book read. These results enhance our understanding of the role of parent questions in young children’s language environments in different informal learning contexts.
more »
« less
- Award ID(s):
- 1811356
- PAR ID:
- 10553944
- Publisher / Repository:
- National Science Foundation (NSF) Public Access Repository
- Date Published:
- Journal Name:
- Journal of Experimental Child Psychology
- Volume:
- 246
- Issue:
- C
- ISSN:
- 0022-0965
- Page Range / eLocation ID:
- 106000
- Subject(s) / Keyword(s):
- Informal STEM Parent–child dyads Preschool STEM learning Questions
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Previous studies document associations between parents’ use of guided play strategies and children’s STEM skills. We extended existing research by exploring mediating mechanisms that may account for these links. Parents played with their preschool children (N=75; 49% girls, 51% boys; 94% White, 3% Black, 1% Biracial, 1% Asian, 1% Native American; Mage = 4.82 years), undertaking a building challenge. Videotaped play was coded for parents’ guiding STEM talk (density of math, spatial, and scientific inquiry language) and management strategy (high- vs. low-directiveness). Mediators included children’s STEM talk during play and self-regulated learning (assessed by executive function tests and examiner’s ratings of children’s task orientation). Structural equation models confirmed hypothesized mediated paths from parent STEM talk to child math (but not spatial) skills via child STEM talk, and from parent STEM talk and directiveness to child math and spatial skills via child self-regulated learning. We discuss implications for future research and intervention design.more » « less
-
Informal science learning sites (ISLS) create opportunities for children to learn about science outside of the classroom. This study analyzed children’s learning behaviors in ISLS using video recordings of family visits to a zoo, children’s museum, or aquarium. Furthermore, parent behaviors, features of the exhibits and the presence of an educator were also examined in relation to children’s behaviors. Participants included 63 children (60.3% female) and 44 parents in 31 family groups. Results showed that parents’ science questions and explanations were positively related to children observing the exhibit. Parents’ science explanations were also negatively related to children’s science explanations. Furthermore, children were more likely to provide science explanations when the exhibit was not interactive. Lastly there were no differences in children’s behaviors based on whether an educator was present at the exhibit. This study provides further evidence that children’s interactions with others and their environment are important for children’s learning behaviors.more » « less
-
Children’s early understanding of mathematics provides a foundation for later success in school. Identifying ways to enhance mathematical instruction is crucial to understanding the ideal ways to promote academic success. Previous work has identified mathematical language (i.e., the words and concepts related to early mathematical development such as more, same, or similar) as a key mechanism that can be targeted to improve children’s development of early numeracy skills (e.g., counting, cardinality, and addition). Current recommendations suggest a combination of numeracy instruction and quantitative language instruction to promote numeracy skills. However, there is limited direct support of this recommendation. The goal of the proposed study is to compare the unique and combined effects of each type of instruction on children’s numeracy skills in the context of picture book reading. We randomly assigned 234 children (ages 3–5) to one of four conditions where they worked with trained project staff who read picture books targeting: (a) quantitative language only (e.g., more or less), (b) numeracy only (e.g., cardinality, addition), (c) combined [quantitative language + numeracy], or (d) nonnumerical (active control) picture books. Results revealed no significant effects of the quantitative language only or numeracy only conditions, but mixed effects of the combined condition. These findings indicate that more work is needed on how mathematical language and numeracy instruction should best be delivered to preschool children.more » « less
-
IntroductionEarly informal learning experiences are essential for sparking long-term interest in science, technology, engineering, and math (STEM). In a prior study, we found more promising parent involvement outcomes when families of young children were provided with STEM family education events along with home STEM activity kits compared to providing workshops alone. This study was a conceptual replication using the same program—Teaching Together STEM—to deliver educational workshops plus home activity kits; however, we varied the delivery method by using virtual “funshops” to evaluate if parents perceived this modality as feasible and useful. MethodsMuseum informal science educators introduced four units via virtual video chat sessions linked to 12 hands-on STEM activities that were mailed to families randomly assigned to the treatment group. Half of the families were assigned to a waitlist control group that received a portion of the virtual program after the posttest. Participants included 60 families with children aged 3 to 5 years from diverse linguistic and socioeconomic backgrounds. ResultsOur results indicate no significant group differences in the primary outcome of parents’ involvement in informal STEM but a small, positive effect size (ES = 0.18) that was similar in magnitude to the prior, in-person study. Although parents mostly perceived the remote delivery as convenient and the materials as engaging for their child, there were no significant program impacts on children’s general science interests (ES = −0.19). DiscussionDespite the convenience, parents reported time was a barrier to doing STEM activities at home. Parents with lower education levels were less likely to attend, suggesting virtual approaches are not sufficient for ensuring broad access to family engagement programs for populations underrepresented in STEM.more » « less
An official website of the United States government

