Annual migratory movement, apparent molt-migration, migration schedule, and diffuse migratory connectivity of Hermit Warblers
                        
                    - Award ID(s):
- 2025755
- PAR ID:
- 10554084
- Publisher / Repository:
- Avian Conservation and Ecology
- Date Published:
- Journal Name:
- Avian Conservation and Ecology
- Volume:
- 19
- Issue:
- 2
- ISSN:
- 1712-6568
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            Abstract The impact of climate change on spring phenology poses risks to migratory birds, as migration timing is controlled predominantly by endogenous mechanisms. Despite recent advances in our understanding of the underlying genetic basis of migration timing, the ways that migration timing phenotypes in wild individuals may map to specific genomic regions requires further investigation. We examined the genetic architecture of migration timing in a long-distance migratory songbird (purple martin,Progne subis subis) by integrating genomic data with an extensive dataset of direct migratory tracks. A moderate to large amount of variance in spring migration arrival timing was explained by genomics (proportion of phenotypic variation explained by genomics = 0.74; polygenic scoreR2 = 0.24). On chromosome 1, a region that was differentiated between migration timing phenotypes contained genes that could facilitate nocturnal flights and act as epigenetic modifiers. Overall, these results advance our understanding of the genomic underpinnings of migration timing.more » « less
- 
            Synopsis Corticosterone, the main glucocorticoid in birds, is a major mediator of the incredible physiological feat of migration. Corticosterone plays important roles in migration, from preparation to in-flight energy mobilization to refueling, and corticosterone levels often show distinct elevations or depressions during certain stages of the migratory process. Here, we ask whether corticosterone's role in migration shapes its modulation during other life-history stages, as is the case with some other phenotypically flexible traits involved in migration. Specifically, we use a global dataset of corticosterone measures to test whether birds’ migratory status (migrant versus resident) predicts corticosterone levels during breeding. Our results indicate that migratory status predicts neither baseline nor stress-induced corticosterone levels in breeding birds; despite corticosterone’s role in migration, we find no evidence that migratory corticosterone phenotypes carry over to breeding. We encourage future studies to continue to explore corticosterone in migrants versus residents across the annual cycle. Additionally, future efforts should aim to disentangle the possible effects of environmental conditions and migratory status on corticosterone phenotypes; potentially fruitful avenues include focusing on regions where migrants and residents overlap during breeding. Overall, insights from work in this area could demonstrate whether migration shapes traits during other important life stages, identify tradeoffs or limitations associated with the migratory lifestyle, and ultimately shed light on the evolution of flexible traits and migration.more » « less
- 
            Partial migration is a common phenomenon wherein populations include migratory and resident individuals. Whether an individual migrates or not has important ecological and management implications, particularly within protected populations. Within partially migratory populations of Oncorhynchus mykiss, migration is highly correlated with a specific genomic region, but it is unclear how well this region predicts migration at the individual level. Here, we relate sex and life history genotype, determined using >400 single nucleotide polymorphisms (SNPs) on the migratory-linked genomic region, to life history expression of marked juvenile O. mykiss from two tributaries to the South Fork Eel River, northern California. Most resident fish were resident genotypes (57% resident, 37% heterozygous, 6% migratory genotype) and male (78%). Most migratory fish were female (62%), but were a mixture of genotypes (30% resident, 45% heterozygous, 25% migratory genotype). Sex was more strongly correlated with life history expression than genotype, but the best-supported model included both. Resident genotypes regularly migrated, highlighting the importance of conserving the full suite of life history and genetic diversity in partially migratory populations.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    