skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Special cubulation of strict hyperbolization
Abstract We prove that the Gromov hyperbolic groups obtained by the strict hyperbolization procedure of Charney and Davis are virtually compact special, hence linear and residually finite. Our strategy consists in constructing an action of a hyperbolized group on a certain dual$$\operatorname {CAT}(0)$$ CAT ( 0 ) cubical complex. As a result, all the common applications of strict hyperbolization are shown to provide manifolds with virtually compact special fundamental group. In particular, we obtain examples of closed negatively curved Riemannian manifolds whose fundamental groups are linear and virtually algebraically fiber.  more » « less
Award ID(s):
2109683
PAR ID:
10554139
Author(s) / Creator(s):
;
Publisher / Repository:
Springer-Verlag
Date Published:
Journal Name:
Inventiones mathematicae
Volume:
236
Issue:
3
ISSN:
0020-9910
Page Range / eLocation ID:
925 to 997
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We obtain new optimal estimates for the$$L^{2}(M)\to L^{q}(M)$$ L 2 ( M ) L q ( M ) ,$$q\in (2,q_{c}]$$ q ( 2 , q c ] ,$$q_{c}=2(n+1)/(n-1)$$ q c = 2 ( n + 1 ) / ( n 1 ) , operator norms of spectral projection operators associated with spectral windows$$[\lambda ,\lambda +\delta (\lambda )]$$ [ λ , λ + δ ( λ ) ] , with$$\delta (\lambda )=O((\log \lambda )^{-1})$$ δ ( λ ) = O ( ( log λ ) 1 ) on compact Riemannian manifolds$$(M,g)$$ ( M , g ) of dimension$$n\ge 2$$ n 2 all of whose sectional curvatures are nonpositive or negative. We show that these two different types of estimates are saturated on flat manifolds or manifolds all of whose sectional curvatures are negative. This allows us to classify compact space forms in terms of the size of$$L^{q}$$ L q -norms of quasimodes for each Lebesgue exponent$$q\in (2,q_{c}]$$ q ( 2 , q c ] , even though it is impossible to distinguish between ones of negative or zero curvature sectional curvature for any$$q>q_{c}$$ q > q c
    more » « less
  2. Abstract Given$$g \in \mathbb N \cup \{0, \infty \}$$ g N { 0 , } , let$$\Sigma _g$$ Σ g denote the closed surface of genusgwith a Cantor set removed, if$$g<\infty $$ g < ; or the blooming Cantor tree, when$$g= \infty $$ g = . We construct a family$$\mathfrak B(H)$$ B ( H ) of subgroups of$${{\,\textrm{Map}\,}}(\Sigma _g)$$ Map ( Σ g ) whose elements preserve ablock decompositionof$$\Sigma _g$$ Σ g , andeventually like actlike an element ofH, whereHis a prescribed subgroup of the mapping class group of the block. The group$$\mathfrak B(H)$$ B ( H ) surjects onto an appropriate symmetric Thompson group of Farley–Hughes; in particular, it answers positively. Our main result asserts that$$\mathfrak B(H)$$ B ( H ) is of type$$F_n$$ F n if and only ifHis. As a consequence, for every$$g\in \mathbb N \cup \{0, \infty \}$$ g N { 0 , } and every$$n\ge 1$$ n 1 , we construct a subgroup$$G <{{\,\textrm{Map}\,}}(\Sigma _g)$$ G < Map ( Σ g ) that is of type$$F_n$$ F n but not of type$$F_{n+1}$$ F n + 1 , and which contains the mapping class group of every compact surface of genus$$\le g$$ g and with non-empty boundary. 
    more » « less
  3. Abstract We prove that many relatively hyperbolic groups obtained by relative strict hyperbolization admit a cocompact action on a cubical complex. Under suitable assumptions on the peripheral subgroups, these groups are residually finite and even virtually special. We include some applications to the theory of manifolds, such as the construction of new non‐positively curved Riemannian manifolds with residually finite fundamental group, and the existence of non‐triangulable aspherical manifolds with virtually special fundamental group. 
    more » « less
  4. Abstract Let 𝐺 be a finite solvable permutation group acting faithfully and primitively on a finite set Ω.Let G 0 G_{0}be the stabilizer of a point 𝛼 in Ω.The rank of 𝐺 is defined as the number of orbits of G 0 G_{0}in Ω, including the trivial orbit { α } \{\alpha\}.In this paper, we completely classify the cases where 𝐺 has rank 5 and 6, continuing the previous works on classifying groups of rank 4 or lower. 
    more » « less
  5. Abstract The radiation of steady surface gravity waves by a uniform stream$$U_{0}$$ U 0 over locally confined (width$$L$$ L ) smooth topography is analyzed based on potential flow theory. The linear solution to this classical problem is readily found by Fourier transforms, and the nonlinear response has been studied extensively by numerical methods. Here, an asymptotic analysis is made for subcritical flow$$D/\lambda > 1$$ D / λ > 1 in the low-Froude-number ($$F^{2} \equiv \lambda /L \ll 1$$ F 2 λ / L 1 ) limit, where$$\lambda = U_{0}^{2} /g$$ λ = U 0 2 / g is the lengthscale of radiating gravity waves and$$D$$ D is the uniform water depth. In this regime, the downstream wave amplitude, although formally exponentially small with respect to$$F$$ F , is determined by a fully nonlinear mechanism even for small topography amplitude. It is argued that this mechanism controls the wave response for a broad range of flow conditions, in contrast to linear theory which has very limited validity. 
    more » « less